P = 2+22+23+24+25+26+27+28+29+210
Chứng tỏ P chia hết cho 3
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
Tổng sau có chia hết cho 3 không?
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3
Tổng sau có chia hết cho 3 không?
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
A = 2 + 22 + 23 + ... + 210 (10 số hạng)
= (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)
= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)
= (1 + 2)(2 + 23 + ... + 29)
= 3(2 + 23 + ... + 29) \(⋮\)3
=> A \(⋮\)3
Đề bài có bị sai không vậy ạ.Mình thấy hơi sai sai
A=2+22+23+24+25+26+27+28+29+210
A=2+20+2+20+3+20+4+20+5+20+6+20+7+20+8+20+9+210
A=20x8+(2+2+3+4+5+6+7+8+9)+210
A=160 + 46 + 210
A= 162 + 256
A= 416
Vì 4+1+6=11 => 416 không chia hết cho 3
=> A không chia hết cho 3
Tổng sau có chia hết cho 7 không? A= 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
Tổng đó không chia hết cho 7
Chúc bạn học tốt
vì;
2khong chia het cho 7
22khong chia het cho 7
.............
28 chia hết cho 7
..............
210 chia hết cho 7
Sr:2+22+23+24+25+26+27+28+29+210 không chia hết cho7
k mình nhé xin bn day
chúc bn học giỏi
Tổng sau có chia hết cho 2 không?
A=2+22+23+24+25+26+27+28+29+210
Mọi người giúp mình vớiii, mình cảm ơn nhiều ạ! <3
Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2
tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2
Cho A = 2 2 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + x. Tìm các số tự nhiên x nhỏ hơn 5 để A chia hết cho 3
Tính tổng G=21+22+23+24+25+26+27+28+29+210. Chứng minh rằng:
a)Suy ra bằng G=2048-2.
b)G⋮2 và 3.
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)
G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210
G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)
G = 211 - 2
G = 2048 - 2 (đpcm)
b,
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)
Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
G = (21 +22) +(23 +24)+(25+26) +(27+28) +(29+210)
G = 2.(1+2) + 23.(1 + 2) +25.(1+2) +27.(1+2) +29.(1+2)
G = 2.3 + 23.3 + 25.3 + 27.3 + 29.3
G = 3.(2 + 23 + 25 + 27 + 29)
Vì 3⋮ 3 nên G = 3.(2 +25 + 27+29) ⋮ 3 (đpcm)
Cho S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27. Chứng tỏ rằng S chia hết cho 3.
\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)
P= 1+2+22+23+24+25+26+27+28. Chứng minh rằng P chia hết cho 3
Cho S = 1+ 2+22 + 23 + 24 + 25 + 26 + 27
Chứng tỏ rằng S chia hết cho 3.
S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)
S= 3+45+51+51
S=3+3.15+3.17+3.17
S=3.(1+15+17.2): hết 3
tick nha nhanh nhất nè