Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen hai Yen
Xem chi tiết
Đinh Phương Nga
8 tháng 4 2016 lúc 21:11

\(M=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+3y^2-2\)

\(M=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\ge-2\)

Naruto Uzumaki
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2019 lúc 13:02

\(2xy+2x-5z=0\Rightarrow5z=2xy+2x\Rightarrow z=\frac{2}{5}xy+\frac{2}{5}x\)

\(A=x^2+2y^2+2xy+\frac{8}{5}y+z+2\)

\(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2}{5}xy+\frac{2}{5}x+2\)

\(A=x^2+2y^2+\frac{12}{5}xy+\frac{2}{5}x+\frac{8}{5}y+2\)

\(A=x^2+\left(\frac{6y}{5}\right)^2+\left(\frac{1}{5}\right)^2+2.\frac{6}{5}xy+\frac{2}{5}x+\frac{12y}{25}+\frac{14}{25}y^2+\frac{28y}{25}+\frac{14}{25}+\frac{7}{5}\)

\(A=\left(x+\frac{6y}{5}+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

\(\Rightarrow A_{min}=\frac{7}{5}\) khi \(\left\{{}\begin{matrix}x=1\\y=-1\\z=0\end{matrix}\right.\)

tt quỳnh
Xem chi tiết
Nguyễn Tất Đạt
13 tháng 5 2018 lúc 18:00

\(A=2x^2+5y^2-2xy+2x+2y\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(4y^2+2.2y.\frac{1}{2}+\frac{1}{4}\right)-1-\frac{1}{4}\)

\(=\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\)

Ta thấy: \(\left(x-y\right)^2\ge0;\left(x+1\right)^2\ge0;\left(2y+\frac{1}{2}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(2y+\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

\(\Rightarrow Min_A=-\frac{5}{4}\)

Quân Trần
Xem chi tiết
Trần Hải Quân
Xem chi tiết
_Guiltykamikk_
22 tháng 8 2018 lúc 20:50

\(D=x^2+5y^2+2xy-2y+2005\)

\(D=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+2004,75\)

\(D=\left(x+y\right)^2+\left(2y+\frac{1}{2}\right)^2+2004,75\)

Mà  \(\left(x+y\right)^2\ge0\forall x;y\)

      \(\left(2y+\frac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow D\ge2004,75\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x+y=0\\2y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{1}{4}\end{cases}}\)

Vậy  \(D_{Min}=2004,75\Leftrightarrow\left(x;y\right)=\left(\frac{1}{4};-\frac{1}{4}\right)\)

Quân Trần
Xem chi tiết
Lan Ngọc
Xem chi tiết
Nguyễn Việt Hoàng
11 tháng 8 2020 lúc 12:54

\(M=x^2-8x+5\)

\(\Leftrightarrow M=x^2-8x+16-11\)

\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)

Min M = -11 

\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
11 tháng 8 2020 lúc 12:57

\(N=-3x-6x-9\)

\(\Leftrightarrow N=-9x-9\le-9\)

Max N = -9

\(\Leftrightarrow x=0\)

Khách vãng lai đã xóa
Xyz OLM
11 tháng 8 2020 lúc 12:58

a) Ta có : M = x2 - 8x + 5 = x2 - 8x + 16 - 17 = (x - 4)2 - 17 \(\ge\)-17

Dấu "=" xảy ra <=> x - 4 = 0 => x = 4

Khách vãng lai đã xóa
Vân Trang Nguyễn Hải
Xem chi tiết
Nguyễn Châm Anh
7 tháng 8 2017 lúc 7:50

\(Q=x^2+2y^2-2xy-4y+2017\)

\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)

\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)

Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)

Lê Thủy Vân
Xem chi tiết
alibaba nguyễn
10 tháng 12 2016 lúc 11:54

Ta có

\(A=x^2+2y^2+2xy-2x-8y+2017\)

\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)

\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)

\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)