Cho xyz=1 .Tính giá trị biểu thức
\(S=\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)
Cho 3 số dương x; y; z thỏa mãn xyz = 1.
Tính giá trị của biểu thức
M = \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+yx+1}+\dfrac{z+2zx+1}{z+zx+z+1}\)
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
Cho \(x,y,z\in Q\) sao cho \(xyz=1\)
Tính giá trị của biểu thức \(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\) ?
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)
\(A=\dfrac{z+xz+1}{xz+z+1}\)
\(A=1\)
\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)⇔\(A=\dfrac{z}{1+xz+z}+\dfrac{xz}{z+1+xz}+\dfrac{1}{xz+z+1}\)(vì xyz=1)
⇔\(A=\dfrac{z+xz+1}{xz+z+1}\)⇔\(A=1\)
Xong rồi nè bn ơi
\(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)
\(=\dfrac{1}{\dfrac{1}{z}+\dfrac{1}{yz}+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1}{y}+z+1}\)
\(=\dfrac{1}{\dfrac{y+1+yz}{yz}}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1+zy+y}{y}}\)
\(=\dfrac{yz}{y+1+yz}+\dfrac{1}{yz+y+1}+\dfrac{y}{1+zy+y}=\dfrac{y+yz+1}{y+yz+1}=1\)
Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)
Cho xyz=2019. Tính giá trị biểu thức \(A=\dfrac{2019x}{xy+2019x+2019}+\dfrac{y}{yz+y+2019}+\dfrac{z}{xz+z+1}\)
\(A=\dfrac{xyz.x}{xy+xyz.x+xyz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{xyz+yz+y}\)
\(=\dfrac{xz}{1+xz+z}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{xyz}{y+xyz+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{2019}{y+2019+yz}+\dfrac{y}{yz+y+2019}+\dfrac{yz}{yz+y+2019}\)
\(=\dfrac{yz+y+2019}{yz+y+2019}=1\)
Cho \(x,y,z\ne-1\). Giá trị của biểu thức \(A=\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{zx+2x+1}{zx+x+z+1}\).
Tính giá trị biểu thức
a, A=xy - 4y -5x +20 với x =14 , y=5.5
b,b= x^2 + xy - 5x - 5y với x= \(5\dfrac{1}{5}\), y =\(4\dfrac{4}{5}\)
c, c=xyz - ( xy + yz + zx ) +x + y + z -1 , với x = 9 ,y 10,z=11
d,d=x^3- x^2y+ y^3 , với x =5,75 , y=4,25
a: A=y(x-4)-5(x-4)
=(x-4)(y-5)
Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5
b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)
Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)
=0,2*10=2
d: Khi x=5,75 và y=4,25 thì
D=5,75^3-5,75^2*4,25+4,25^3
=8087/64
Cho các số thực dương x, y, z thỏa mãn x3 + y3 + z3 = 24. Tìm GTNN của biểu thức
\(M=\dfrac{xyz+2\left(x+y+z\right)^2}{xy+yz+zx}-\dfrac{8}{xy+yz+zx+1}\)
Cho xyz = 1, tính P= \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹx+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????