Tìm x:
a) x3-4x=0
b) (x+1)2 -x-1=0
Tìm x, biết:
a) 2-x = 2 ( x - 2 ) 3 ; b) 8 x 3 - 72x = 0;
c) ( x - 1 , 5 ) 6 + 2 ( 1 , 5 - x ) 2 = 0; d) 2 x 3 +3 x 2 +3 + 2x = 0;
e) x 3 - 4x- 14x(x - 2) = 0; g) x 2 (x + 1)- x(x + 1) + x(x - 1) = 0.
Tìm x
a) 4x(x + 1) = 8(x + 1)
b) x(x – 1) – 2(1 – x) = 0
c) 5x(x – 2) – (2 – x) = 0
d) 5x(x – 200) – x + 200 = 0
e) x3 + 4x = 0
f) (x + 1) = (x + 1)2
a) 4x(x+1)=8(x+1)
<=>4x(x+1)-8(x+1)=0
<=>(4x-8)(x+1)=0
<=>\(\left[\begin{array}{} 4x-8=0\\ x+1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=2\\ x=-1 \end{array} \right.\)
Vậy...
b)x(x-1)-2(1-x)=0
<=>(x+2)(x-1)=0
<=>\(\left[\begin{array}{} x+2=0\\ x-1=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-2\\ x=1 \end{array} \right.\)
Vậy...
c)5x(x-2)-(2-x)=0
<=>(5x+1)(x-2)=0
<=>\(\left[\begin{array}{} 5x+1=0\\ x-2 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=-1/5\\ x=2 \end{array} \right.\)
d)5x(x-200)-x+200=0
<=>(5x-1)(x-200)=0
<=>\(\left[\begin{array}{} 5x-1=0\\ x-200=0 \end{array} \right.\)
<=>\(\left[\begin{array}{} x=1/5\\ x=200 \end{array} \right.\)
e)\(x^3+4x=0 \)
\(\Leftrightarrow x(x^2+4)=0 \)
\(\Leftrightarrow \left[\begin{array}{} x=0\\ x^2+4=0 (loại vì x^2+4>=0 với mọi x) \end{array} \right.\)
Vậy x=0
f)\((x+1)=(x+1)^2\)
\(\Leftrightarrow (x+1)-(x+1)^2=0\)
\(\Leftrightarrow (x+1)(1-x-1)=0\)
\(\Leftrightarrow (x+1)(-x)=0\)
\(\Leftrightarrow \left[\begin{array}{} x=-1\\ x=0 \end{array} \right.\)
Vậy....
Tìm x biết:
a) x 6 + 2 x 3 +1 = 0; b) x(x - 5) = 4x - 20;
c) x 4 -2 x 2 =8-4 x 2 ; d) ( x 3 - x 2 ) - 4 x 2 + 8x-4 = 0.
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.
tìm x biết:
a)x2 + 3x = 0 b) x3 – 4x = 0
c) 5x(x-1) = x-1 d) 2(x+5) - x2-5x = 0
e) 2x(x-5)-x(3+2x)=26 f) 5x.(x – 2012) – x + 2012 = 0
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
Tìm x
a) 4x(x+1)-x-1 = 0
b) x3-4x2+4x =0
c) x2-3x + 2 =0
tham khảo: https://hoc24.vn/cau-hoi/.2256230161739
a) ⇔ \(4x^2+4x-x-1=0\)
⇔ \(4x^2+3x-1=0\)
⇔ \(4x(x+1)-(x+1)=0\)
⇔ \((x+1)(4x-1)=0\)
⇒ \(\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy...
b) \(x^3-4x^2+4x=0\)
⇔ \(x^2(x-2)-2x(x-2)=0\)
⇔ \((x-2)(x^2-2x)=0\)
⇒ \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
Vậy...
c) \(x^2-3x+2=0\)
⇔ \(x(x-2)-(x-2)=0\)
⇔ \((x-1)(x-2)=0\)
⇒ \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Tìm x biết:
a. x3 – 25x = 0 b. 3x(x- 2) – x + 2 = 0
c. x2 – 4x - 5 = 0 d.x3 – x2 + 3x – 3 = 0
e. x3 + 27 + ( x + 3)( x – 9) = 0
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Bài 2: Tìm x, biết:
a) 4x(x + 1) = 8( x + 1) c) x2 – 6x + 8 = 0
b) x3 + x2 + x + 1 = 0 d) x3 – 7x – 6 = 0
\(a,\Leftrightarrow\left(4x-8\right)\left(x+1\right)=0\\ \Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow x=-1\\ c,\Leftrightarrow x^2-2x-4x+8=0\\ \Leftrightarrow\left(x-2\right)\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ d,\Leftrightarrow x^3-3x^2+3x-9x+2x-6=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x^2+x+2x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x=-2\end{matrix}\right.\)
a) \(\Rightarrow4\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b) \(\Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+1\right)=0\)
\(\Rightarrow x=-1\left(do.x^2+1\ge1>0\right)\)
c) \(\Rightarrow x\left(x-4\right)-2\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) \(\Rightarrow x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\left(x^2+3x+2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-1\end{matrix}\right.\)
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
2a) pt <=> (x + 6)^2 = 0
<=> x = -6
b) pt <=> (4x - 1)^2 = 0
<=> x = 1/4
c) pt<=> (x + 1)^3 = 0
<=> x = -1
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
1. Rút gọn
a, A=(4x+3y)2 + (4x-3y)2
b,B=(x-23)-(x+2)3
c,C=(x+2y)2+2.(x+2y) (x-2y) + (x-2y)2
2. Tìm x
a, x2+12x+36=0
b,16x2-8x+1=0
c,x3+3x2+3x+1=0
Bài 2:
a: Ta có: \(x^2+12x+36=0\)
\(\Leftrightarrow x+6=0\)
hay x=-6
b: Ta có: \(16x^2-8x+1=0\)
\(\Leftrightarrow4x-1=0\)
hay \(x=\dfrac{1}{4}\)
Bài 1:
a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)
\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)
\(=32x^2+18y^2\)
b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)
\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)
\(=-12x^2-24\)
c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)
\(=\left(x+2y+x-2y\right)^2\)
\(=4x^2\)