chứng minh rằng: 3n+1+3n+2+3n+3 chia hết cho 13 ( n thuộc N)
26 - |x + 9| = -13
15 - |x-31| = 11
Bài 2
a) tìm n thuộc N
3n-1 chia hết cho n + 2
b)Chứng tỏ rằng :
ƯCLN ( 3n +13 ; 3n+14)=1
bai 1
26 - |x +9| = -13
|x + 9|= 26 - (-13)
|x + 9| = 39
x =39 + 9
x = 48
15 - |x - 31| = 11
|x - 31| = 15 - 11
|x - 31| = 4
x = 4 + 31
x = 35
Bài 1:
26 - |x+9| = -13
|x+9| = 39
TH1: x + 9 = 39 => x = 30
TH2: x + 9 = -39 => x = - 48
KL:...
b) 15 - | x-31| = 11
|x-31| = 4
TH1: x-31 = 4 => ...
TH2: x-31 = -4 =>...
Bài 2:
a) ta có: 3n - 1 chia hết cho n + 2
=> 3n + 6 - 7 chia hết cho n + 2
3.(n+2) - 7 chia hết cho n + 2
...
bn tự làm tiếp nha
b) Gọi ƯCLN(3n+13;3n+14) là d
ta có: 3n + 13 chia hết cho d
3n + 14 chia hết cho d
=> 3n + 14 - 3n -13 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(3n+13;3n+14) = 1
Chứng minh rằng với n không chia hết cho 3 thì32n+3n+1 chia hết cho 13
Chứng minh 5^n+3 -3n+3 +5n+2 -3n+1 chia hết cho 60 với mọi n thuộc n
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
chứng minh rằng :
với n thuộc N thi (3^n+2)+(2^n+3)+3n+(3^n+1) chia hết cho 10
CHỨNG MINH RẰNG:
a. \(11^{n+2}+12^{2n+1}\)chia hết cho 133 với mọi n thuộc N.
b. \(3^{4n+2}+2.4^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
c. \(3.5^{2n+1}+2^{3n+1}\)chia hết cho 17 với mọi n thuộc N.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
chứng minh rằng với mọi n thuộc N thì ( n^3 + 3n^2 -4n ) chia hết cho 6
giời ơi lớp 6 mà cũng ko biết, bó tay
ủa bn Minh Anh 6A Lê bn ấy ko biết mới hỏi chứ
mai phương học trg nào đấy
Chứng minh rằng với mọi số nguyên dương n thì:
B = 3n+3 - 2n+3 + 3n+2 - 2n+1 chia hết cho 10;
1) Cho A= (3n - 13)/(n - 1) (n thuộc Z )
a) Tìm n nguyên để A nguyên.
b) Tìm n nguyên để A là phân số tối giản.
2. Cho a,b thuộc N. Chứng minh rằng: 4a + b chia hết cho 5 và a + 4b chia hết cho 5
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6