Tìm a, b, c, d sao cho \(p=a^2+b^2+c^2\) là số nguyên tố và \(a^4+b^4+c^4⋮p\)
1) Tìm số nguyên tố có 2 chữ số khác nhau có dạng xy (x>y>0) sao cho hiệu của số đó với số viết theo thứ tự ngược lại của số đó là số chính phương
2) Cho 4 số nguyên a,b,c,d sao cho 2b=a+c, 2c=b+d, c^2+d^2<4. Tìm số nguyên a biết b=2
Tìm tất cả các số nguyên tố p có dạng p=a^2+b^2+c^2 với a, b, c là các số nguyên dương sao cho a^4+b^4+c^4 chia hết cho p
Tìm các số nguyên tố p có dạng: p=a2+b2+c2với a,b,c là các số nguyên dương sao cho a4+b4+c4 chia hết cho p
Tìm tất cả các số nguyên tố p có dạng p=a2+b2+c2 với a,b,c là các số nguyên dương sao cho a4+b4+c4 chia hết cho p
B1:Cho p là số nguyên tố >3.Chứng minh rằng (p-1)(p+4) chia hết cho 6
B2:Chứng minh rằng chỉ có duy nhất 1 bộ 3 số nguyên tố mà hiệu của 2 số liên tiếp =4
B3:Tìm số nguyên tố <200, biết rằng khi chia nó cho 60 thì số dư là hợp số
B4: Tìm các số nguyên tố a,b,c biết 2a+6b+21c=78
B5:Tìm 3 số nguyên tố liên tiếp a,b,c (a<b<c) sao cho A=a^2+b^2+c^2 cũng là số nguyên tố
Giúp mình với, mình sẽ tick cho
Tìm số nguyên tố P, sao cho:
a)P+2 và P+4 là số nguyên tố
b)P+2 và P+6 là số nguyên tố
c)P+3 và P+5 là số nguyên tố
Tìm số nguyên tố p sao cho:
a) p+2 và p+4 là số nguyên tố
b) p+2 và p+6 là số nguyên tố
c) p+3 và p+5 là số nguyên tố
a, CMR với mọi số nguyên n không chia hết cho 5 thì \(n^4-1\) chia hết cho 5
b, Tìm tất cả các số nguyên tố a, b, c ,d, e tm \(a^4+b^4+c^4+d^4+e^4=abcde\)
c, Tìm các số nguyênduwongc a,b tm \(a\left(ab+1\right)⋮a^2+b\) và \(b\left(ab+1\right)⋮b^2-a\)
Đề HSG Nghệ An ak bạn
P = \(n^4-1=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5\left(n-1\right)\left(n+1\right)\)
P \(⋮5\Leftrightarrow Q=\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮5\)
mà n không chia hết cho 5 => có dạng n = 5k + 1 ;5k + 2 ; 5k + 3 ;5k + 4 (k \(\in Z\))
Khi n = 5k + 1 => n - 1 \(⋮5\Rightarrow Q⋮5\Rightarrow P⋮5\)
tương tự với n = 5k + 2 ; n = 5k + 3 ; n = 5k + 4 thì Q \(⋮5\Rightarrow P⋮5\)
b.
Điều duy nhất cần chú ý trong bài toán này: \(n^4\equiv1\left(mod5\right)\) với mọi số nguyên n ko chia hết cho 5
Do đó:
- Nếu cả 5 số a;b;c;d;e đều ko chia hết cho 5 thì vế trái chia hết cho 5, vế phải ko chia hết cho 5 (ktm)
- Nếu cả 5 số a;b;c;d;e đều chia hết cho 5 thì do chúng là số nguyên tố
\(\Rightarrow a=b=c=d=e=5\)
Thay vào thỏa mãn
- Nếu có k số (với \(1\le k\le4\)) trong các số a;b;c;d;e chia hết cho 5, thì vế phải chia hết cho 5, vế phải chia 5 dư \(5-k\ne\left\{0;5\right\}\) nên ko chia hết cho 5 \(\Rightarrow\) ktm
Vậy \(\left(a;b;c;d;e\right)=\left(5;5;5;5;5\right)\) là bộ nghiệm nguyên tố duy nhất
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
tìm số nguyên tố p sao cho:
a, p+2 và p+4 cũng là số nguyên tố
b, p+10 và p+4 cũng là số nguyên tố
c, p+2 , p+6 và p+8 cũng là số nguyên tố
a) Với p=1
Ta có
p+2=1+2=3 (nguyên tố,thỏa mãn)
p+4=1+4=5 (thỏa mãn )
Nhưng p lại là 1 số nguyên tố mà 1 ko phải số nguyên tố nên p=1 (loại)
Với p=2
Ta có:
p+2=2+2=4 (loại)
=>Trường hợp p=2 (loại)
Với p=3
Ta có
p+2=3+2=5 (thỏa mãn)
p+4=3+4=7 (thỏa mãn)
=>Trường hợp p=3 (thỏa mãn)
Với p>3 thì p có dạng 3k+1 hoặc 3k+2
+,p=3k+1
thì p+2=3k+1+2=3k+3 chia hết cho 3 là hợp số( loại)
+,p=3k+2
thì p+4=3k+2+4=3k+6 chia hết cho 3 là hợp số( loại)
Vậy để p là số nguyên tố và p+2 và p+4 cũng là số nguyên tố thì p=3
Các câu khác bn lm tương tự nha
Mk ko chắc là lm đúng đâu nếu sai thì xl bn nhiều