Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 1 2022 lúc 17:09

\(\dfrac{a^2}{\sqrt{3a^2+14ab+8b^2}}=\dfrac{a^2}{\sqrt{\left(a+4b\right)\left(3a+2b\right)}}\ge\dfrac{2a^2}{a+4b+3a+2b}=\dfrac{a^2}{2a+3b}\)

Tương tự và cộng lại:

\(VT\ge\dfrac{a^2}{2a+3b}+\dfrac{b^2}{2b+3c}+\dfrac{c^2}{2c+3a}\ge\dfrac{\left(a+b+c\right)^2}{5a+5b+5c}=\dfrac{a+b+c}{5}\) (đpcm)

ITACHY
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
2 tháng 8 2018 lúc 13:40

Ta có : \(\sqrt{\dfrac{a^2}{b}}+\sqrt{\dfrac{b^2}{a}}\)

\(=\dfrac{\sqrt{a}^2}{\sqrt{b}}+\dfrac{\sqrt{b}^2}{\sqrt{a}}\)

\(=\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\)

Theo BĐT Cô Si dưới dạng engel ta có :

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)

Dấu \("="\) xảy ra khi \(a=b\)

Chúc bạn học tốt

Ma Sói
2 tháng 8 2018 lúc 11:29

Đề thiếu a,b > 0

\(\sqrt{\dfrac{a^2}{b}}+\sqrt{\dfrac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\)

Áp dụng bđt Svacxo, ta có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\ge\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}=\sqrt{a}+\sqrt{b}\)

=> ĐPCM

Phạm Johny
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 6 2023 lúc 0:47

b: \(A=\dfrac{x^2+4+1}{\sqrt{x^2+4}}=\sqrt{x^2+4}+\dfrac{1}{\sqrt{x^2+4}}>=2\sqrt{\sqrt{x^2+4}\cdot\dfrac{1}{\sqrt{x^2+4}}}=2\)

a: =>ab+ad+bc+cd>=ab+cd+2căn abcd

=>ad+cb-2căn abcd>=0

=>(căn ad-căn cb)^2>=0(luôn đúng)

Trần Đông
Xem chi tiết
Akai Haruma
23 tháng 9 2018 lúc 17:27

Lời giải:

Biến đổi tương đương:

\(\sqrt{\frac{a+b}{2}}\geq \frac{\sqrt{a}+\sqrt{b}}{2}\)

\(\Leftrightarrow \frac{a+b}{2}\geq \frac{(\sqrt{a}+\sqrt{b})^2}{4}=\frac{a+b+2\sqrt{ab}}{4}\)

\(\Leftrightarrow \frac{a+b}{2}-\frac{a+b+2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{a+b-2\sqrt{ab}}{4}\geq 0\)

\(\Leftrightarrow \frac{(\sqrt{a}-\sqrt{b})^2}{4}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b$

Kẻ Huỷ Diệt
Xem chi tiết
ngonhuminh
22 tháng 12 2016 lúc 21:50

đúng với mọi a,b chứ nhỉ

nếu a, b <0 VT>=0 VP<0 => đúng

Bp

\(\Leftrightarrow2.\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+2b^2-\left(a^2+2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) hiển nhiên đúng=> dpcm

Nguyen hoan
Xem chi tiết
Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 16:52

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)

_little rays of sunshine...
Xem chi tiết