Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Long quyền tiểu tử
Xem chi tiết
Minh Hiếu
Xem chi tiết
Trên con đường thành côn...
7 tháng 1 2022 lúc 20:36

Bài 2: Ta có:

\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ

\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ

\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).

Thay vào tìm được y...

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:12

Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.

Bài 4:

Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ

Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.

Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn

\(\Rightarrow q=2\). Lúc này ta có:

\(p^2+2^p=r\)

+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)

+Xét p>3. Ta có:

\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)

\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)

\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số

\(\Rightarrow r\) là hợp số, không phải SNT, loại.

Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài

 

Trên con đường thành côn...
7 tháng 1 2022 lúc 21:22

Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.

Nếu 2n-1 là SCP thì ta có

\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)

Do đó 2n+1 không là SCP

\(\Rightarrowđpcm\)

LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Bảo Liêm
2 tháng 12 2023 lúc 21:02

325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?

ミ★Zero ❄ ( Hoàng Nhật )
4 tháng 12 2023 lúc 10:48

1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên 

= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )

= > 2 ( x + 3 ) - 5 chia hết cho x + 3 

=> -5 chia hết cho x + 3 

hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)

Đến đây em tự tìm các giá trị của x

2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )

= > - 6 chia hết cho x + 5 

= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

....

3,  ( x - 1 ) ( y - 3 ) = 7 

x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)

và ( x - 1 )( y - 3 ) = 7

( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)

(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)

( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)

Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....

Lizy
Xem chi tiết
Kiều Vũ Linh
28 tháng 6 2023 lúc 10:02

Ta có: 2x - 1 = 2(x + 1) - 3

Để (2x - 1)/(x + 1) nguyên thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

HT.Phong (9A5)
28 tháng 6 2023 lúc 10:08
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 2021 lúc 21:31

\(C=\dfrac{9+2\sqrt{x}}{2+3\sqrt{x}}\Rightarrow2C+3C\sqrt{x}=9+2\sqrt{x}\)

\(\Rightarrow\sqrt{x}\left(3C-2\right)=9-2C\)

\(\Rightarrow\sqrt{x}=\dfrac{9-2C}{3C-2}\ge0\Rightarrow\dfrac{2}{3}< C\le\dfrac{9}{2}\)

Mà C nguyên \(\Rightarrow C=\left\{1;2;3;4\right\}\)

- Với \(C=1\Rightarrow\sqrt{x}=\dfrac{9-2C}{3C-2}=7\Rightarrow x=49\)

- Với \(C=2\Rightarrow\sqrt{x}=\dfrac{9-2.2}{3.2-2}=\dfrac{5}{4}\Rightarrow x=\dfrac{25}{16}\)

... tương tự

Huy Nguyen
17 tháng 1 2021 lúc 18:27

C=9+2√x2+3√x⇒2C+3C√x=9+2√x

⇒√x(3C−2)=9−2C

⇒√x=9−2C3C−2≥0⇒23<C≤92 

Mà C nguyên ⇒C={1;2;3;4}

- Với C=1⇒√x=9−2C3C−2=7⇒x=49

- Với C=2⇒√x=9−2.23.2−2=54⇒x=2516

 

Luyện Thanh Mai
Xem chi tiết
Yến Nhi Lê
21 tháng 1 2021 lúc 19:44

undefined

Trương Huy Hoàng
21 tháng 1 2021 lúc 22:30

Bổ sung phần c và d luôn:

c, C = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)

\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)

\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6

\(\Leftrightarrow\) x2 = 11

\(\Leftrightarrow\) x2 - 11 = 0

\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)

d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)

C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))

\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)\(\in\) Ư(5)

Xét các TH:

4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)

4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)

Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z

Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)

No name
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 16:16

a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne\pm1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)

\(b,A=3\\ \Leftrightarrow\dfrac{x+2}{2x+1}=3\\ \Leftrightarrow6x+3=x+2\\ \Leftrightarrow5x+1=0\\ \Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)

\(c,\dfrac{1}{A}=\dfrac{2x+1}{x+2}=\dfrac{2x+4-3}{x+2}=\dfrac{2\left(x+2\right)-3}{x+2}=2-\dfrac{3}{x+2}\)

Để `1/A` là số nguyên thì `3/(x+2)` nguyên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng:

x+2-3-113
x-5-3-1(ktm)1(ktm)

Vậy \(x\in\left\{-5;-3\right\}\)

Thỏ Nghịch Ngợm
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:39

a) Ta có: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)

\(=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)

Nguyễn Lê Phước Thịnh
10 tháng 4 2021 lúc 21:41

b)

ĐKXĐ: \(x\notin\left\{3;-3;-1\right\}\)

Ta có: P=AB

\(=\dfrac{3x}{x-3}\cdot\dfrac{x-3}{x+1}\)

\(=\dfrac{3x}{x+1}\)

Để \(P=\dfrac{9}{2}\) thì \(\dfrac{3x}{x+1}=\dfrac{9}{2}\)

\(\Leftrightarrow9\left(x+1\right)=6x\)

\(\Leftrightarrow9x-6x=-9\)

\(\Leftrightarrow3x=-9\)

hay x=-3(loại)

Vậy: Không có giá trị nào của x để \(P=\dfrac{9}{2}\)

Thành UωU
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 20:59

a: Ta có: \(M=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

b: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Rin Huỳnh
29 tháng 8 2021 lúc 21:05

a) ĐKXĐ: x # 0; x # 1; x# -1

M = (x^2)/(x-1)

Rin Huỳnh
29 tháng 8 2021 lúc 21:07

b) x > 1

Gia Hân
Xem chi tiết
Nguyễn Ngọc Lộc
5 tháng 7 2021 lúc 16:05

Ta có : \(A=\dfrac{x^2+2x+1-4x-4+4}{x+1}\)

\(=\dfrac{\left(x+1\right)^2-4\left(x+1\right)+4}{x+1}=x+1-4+\dfrac{4}{x+1}\)

- Để A là số nguyên

\(\Leftrightarrow x+1\inƯ_{\left(4\right)}\) ( Do x là số nguyên )

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)

Vậy ....