Câu 2:
Tìm số tự nhiên a thoả mãn .13+23+43+53=a2
Trả lời:
tìm số tự nhiên a thoả mãn 13+23+33+33+53+63=a2
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Câu 17: Số tự nhiên x nào dưới đây thỏa mãn: 2 021 . (x – 2 021) = 2 021.
A. 2 020 B. 2 021 C. 2 022 D. 2 023
Câu 18: Chọn đáp án sai.
A. 5
3 < 35 B. 3
4 > 25 C. 4
3 = 26 D. 4
3 > 82
Câu 19: Tìm số tự nhiên n thỏa mãn 3n = 81.
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 21: Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020 ?
A. m = 2 020 B. m = 2 019 C. m = 2 018 D. m = 20
Câu 22: Giá trị của biểu thức 2 . [(195 + 35 : 7) : 8 + 195] – 400 bằng
A. 140 B. 60 C. 80 D. 40
Câu 23: Kết quả của phép tính 34. 6 – [131 – (15 – 9)2 ] là:
A. 319 B. 931 C. 193 D. 391
Câu 24: Nếu x ⁝ 2 và y ⁝ 4 thì tổng x + y chia hết cho?
A. 2 B. 4 C. 8 D. Không xác định
Câu 17: Số tự nhiên x nào dưới đây thỏa mãn: 2 021 . (x – 2 021) = 2 021.
A. 2 020 B. 2 021 C. 2 022 D. 2 023
Câu 18: Chọn đáp án sai.
A. 5
3 < 35 B. 3
4 > 25 C. 4
3 = 26 D. 4 chưa hiểu nắm:B
3 > 82
Câu 19: Tìm số tự nhiên n thỏa mãn 3n = 81.
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 21: Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020 ?
A. m = 2 020 B. m = 2 019 C. m = 2 018 D. m = 20
Câu 22: Giá trị của biểu thức 2 . [(195 + 35 : 7) : 8 + 195] – 400 bằng
A. 140 B. 60 C. 80 D. 40
Câu 23: Kết quả của phép tính 34. 6 – [131 – (15 – 9)2 ] là:
A. 319 B. 931 C. 193 D. 391
Câu 24: Nếu x ⁝ 2 và y ⁝ 4 thì tổng x + y chia hết cho?
A. 2 B. 4 C. 8 D. Không xác định
Câu 17: Số tự nhiên x nào dưới đây thỏa mãn: 2 021 . (x – 2 021) = 2 021.
A. 2 020 B. 2 021 C. 2 022 D. 2 023
Câu 18: ghi lại đề
Câu 19: Tìm số tự nhiên n thỏa mãn 3n = 81.
A. n = 2 B. n = 3 C. n = 4 D. n = 8
Câu 21: Tìm số tự nhiên m thỏa mãn 202018 < 20m < 202020 ?
A. m = 2 020 B. m = 2 019 C. m = 2 018 D. m = 20
Câu 22: Giá trị của biểu thức 2 . [(195 + 35 : 7) : 8 + 195] – 400 bằng
A. 140 B. 60 C. 80 D. 40
Câu 23: Kết quả của phép tính 34. 6 – [131 – (15 – 9)2 ] là:
A. 319 B. 931 C. 193 D. 391
Câu 24: (ghi lại đề)
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 2 + 4 2 + 13 2 ; b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3
a) 2 + 3 2 + 4 2 + 13 2 = 196 = 14 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 2 + 4 2 + 13 2 ;
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 .
a) 2 + 3 2 + 4 2 + 13 2 = 196 = 14 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
Viết các tổng sau thành một bình phương của một Số tự nhiên:
a) 2 + 3 3 + 4 2 + 13 2
b) 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3
a) 2 + 3 3 + 4 2 + 13 2 = 196 = 14 2
b, 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 = 441 = 21 2
Câu 1: Tìm số tự nhiên a,b thoả mãn điều kiện \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31, help!!!!
Gọi số hàng chục là a
Số hàng đơn vị là b
Số cần tìm là 10.a+b
tổng các chữ số là a+b
theo giả thiêt 10a+b chia a+b được 2 dư 7
10a+b là số bị chia
a+b là số chia
Vậy 10a+b = 2(a+b) +7
Kèm theo điều kiện
a là số tự nhiên có 1 chữ sô từ 1 đến 9 (1)
b là số tự nhiên có 1 chữ sô từ 0 đến 9 (2)
a+b >7 điều kiện số chia lớn hơn số dư (3)
Từ 10a+b = 2(a+b) +7
=> 10a+b = 2a+2b +7
=> 8a = 7+b
=> a = (7+b) : 8
Vì a là số tự nhiên nên 7+b phải chia hết cho 8
7+b có thể nhận các giá trị 8 , 16, 24, 32 ,40 v..v
Nếu
----7+b =8
=> b=1
a=1 Loại vì a+b=2 <7 Vi phạm điều (3)
----7+b = 16
==> b= 9
a= 2 Thỏa mãn toàn bộ điều kiện .Số cần tìm là 10x2+9 =29
----7+b = 24
=> b= 17
a= 3 Loại vì b có 2 chữ số theo điều kiện (2 )
Không xét b+7 = 32, 40,48 v..v nữa vì b+7 càng to thì b càng có 2 chữ số hoặc hơn
ĐS: 29
add và k mk nha bn
Tìm các số tự nhiên a; b thoả mãn điều kiện : 11/ 17 < a b < 23/ 29 và 8b-9a=31
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Giải:
Ta biết: và
Theo đề bài:
Khi đó:
Với
Vậy
Tìm số tự nhiên thoả mãn . Trả lời: 1^3+2^3+3^3+4^3+5^3=a^2
a) Tính A 332 33 ...399 3100
B = 2 + 22 + 23 + 24 + … + 2100
b) Cho
2 3 101 A 133 3 ...3 . Chứng minh: A chia hết cho 13
c) Tìm tất cả các số tự nhiên n thoả mãn 5n + 14 chia hết cho n + 2
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32