Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Ly
Xem chi tiết
Nguyễn Tuấn Tài
16 tháng 7 2015 lúc 9:16

Nguyễn Nam Cao nói thế là ko được

Phạm Thị Bắc
17 tháng 10 2017 lúc 22:06

ta có : |x+3|+|x-7|=|x+3|+|7-x|>=|x+3+7-x|=10

dấu "=" xảy ra khi (x+3)(7-x)>=0

giải ra ta đc:  -3<=x<=7,

lại có |2x-5|>=0 dấu "=" xảy ra khi 2x-5=0=> x=2,5 (t/m)

=> A>=10+0+8=18 khi x=2,5

Nguyễn Trường Giang
Xem chi tiết
Huỳnh Quang Sang
30 tháng 9 2020 lúc 19:16

a) Vì \(\hept{\begin{cases}\left|4x-3\right|\ge0\forall x\\\left|5y+7\right|\ge0\forall y\end{cases}}\Rightarrow\left|4x-3\right|+\left|5y+7\right|\ge0\forall x,y\)

=> \(\left|4x-3\right|+\left|5y+7\right|+17,5\ge17,5\forall x\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{7}{5}\end{cases}}\)

Vậy GTNN là 17,5 khi x = 3/4,y = -7/5

b) \(2\left|3x-1\right|-4\)

Vì |3x - 1| \(\ge\)\(\forall\)x

=> 2|3x - 1| - 4 \(\ge\)-4\(\forall\)x

Dấu " = " xảy ra khi và chỉ khi |3x - 1| = 0 => x = 1/3

Vậy GTNN là -4 khi x = 1/3

c) Đây là GTLN mà ?

Vì \(\hept{\begin{cases}\left|5-2x\right|\ge0\forall x\\\left|3y+12\right|\ge0\forall y\end{cases}}\Rightarrow\left|5-2x\right|-\left|3y+12\right|\ge0\forall x,y\)

=> \(4-\left|5-2x\right|-\left|3y+12\right|\le4\forall x,y\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left|5-2x\right|=0\\\left|3y+12\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-4\end{cases}}\)

Vậy GTLN là 4 khi x = 5/2,y = -4

Khách vãng lai đã xóa
marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Phương Lê
Xem chi tiết
Hiền Thảo Bùi
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết
Thiều Thị Hương Trà
Xem chi tiết
Giấc mơ trưa
Xem chi tiết
Trần Thế tiến Thành
Xem chi tiết