Tìm x thỏa mãn: 16x^4-40x^3+100x^2 = 80x^3 - 200x^2 +196x
Tìm x thỏa mãn điều kiện: \(\text{16x^4-40x^3+100x^2 = 80x^3 - 200x^2 +196x}\)
16x4 - 40x3+ 100x2=80x3 - 200x2+196x
Tìm x
a)(x+12)^2-9x^2=0
b)20x^3-15x^2+7x=45-38x
c)16x^4-40x^3+10x^2=80x^3-20x^2+196x
d)-4.(x-7)+11x=-x+3.(x+5)
e)4x.(x^2-3)+x=4x^3-3x+5
a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)
=>(-2x+12)(4x+12)=0
=>x=-3 hoặc x=6
b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)
=>\(x\simeq0.93\)
d: =>-4x+28+11x=-x+3x+15
=>7x+28=2x+15
=>5x=-13
=>x=-13/5
e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)
=>-9x=-3x+5
=>-6x=5
=>x=-5/6
Tìm số nguyên thỏa mãn .
hoặc . hoặc . . .Lời giải:
$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$
$\Rightarrow x=16$ hoặc $x=-16$.
Tìm x để:
P= \(\frac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\) đạt giá trị nhỏ nhất.
dễ dàng pt đc \(A=\frac{4\left(x^2+2x+5\right)^2+256}{x^2+2x+5}=4\left(x^2+2x+5\right)+\frac{256}{x^2+2x+5}\ge64\)
Dấu = xảy ra khi \(4\left(x^2+2x+5\right)=\frac{256}{x^2+2x+5}\Rightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow x=1,x=-3\)
tìm hai số nguyên dương x,y thỏa mãn (x+y)^4=40x+1
tìm x thỏa mãn: x^4-2x^2-16x+1=0
Với giá trị nào của x thì biểu thức: P(x)=\(\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\)đạt giá trị nhỏ nhất.
\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)
Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)
\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)
=(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)
áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)
=>P(x)≥64
Dấu = xảy ra khi x=-1 hoặc x=3
Tìm GTNN của : \(P=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\)
\(P=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\)
\(=\dfrac{\left(4x^4+8x^3+20x^2\right)+\left(8x^3+16x^2+40x\right)+\left(20x^2+40x+100\right)+256}{x^2+2x+5}\)
\(=\left(4x^2+8x+20x\right)+\dfrac{256}{x^2+2x+5}\)
\(\ge2\sqrt{4\left(x^2+2x+5\right)\times\dfrac{256}{x^2+2x+5}}=64\)
Dấu "=" xảy ra khi x = 1 hoặc x = - 3