Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Quyên
Xem chi tiết
Nguyễn Tố Uyên
Xem chi tiết
Hoàng Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2022 lúc 15:03

a: \(\Leftrightarrow\left(x+12-3x\right)\left(x+12+3x\right)=0\)

=>(-2x+12)(4x+12)=0

=>x=-3 hoặc x=6

b: \(\Leftrightarrow20x^3-15x^2+45x-45=0\)

=>\(x\simeq0.93\)

d: =>-4x+28+11x=-x+3x+15

=>7x+28=2x+15

=>5x=-13

=>x=-13/5

e: \(\Leftrightarrow4x^3-12x+x=4x^3-3x+5\)

=>-9x=-3x+5

=>-6x=5

=>x=-5/6

HAI TUYEN
Xem chi tiết
Akai Haruma
30 tháng 11 2023 lúc 22:35

Lời giải:

$x^2=4.4.4.4=16.16=(-16)(-16)=16^2=(-16)^2$

$\Rightarrow x=16$ hoặc $x=-16$.

Nguyễn Quỳnh Chi
Xem chi tiết
Tuấn
7 tháng 8 2016 lúc 23:08

dễ dàng pt đc \(A=\frac{4\left(x^2+2x+5\right)^2+256}{x^2+2x+5}=4\left(x^2+2x+5\right)+\frac{256}{x^2+2x+5}\ge64\)
Dấu = xảy ra khi \(4\left(x^2+2x+5\right)=\frac{256}{x^2+2x+5}\Rightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow x=1,x=-3\)

tram
Xem chi tiết
Quỳnh Mai
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 9 2021 lúc 8:11

\(P\left(x\right)=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\\ P\left(x\right)=\dfrac{4x^2\left(x^2+2x+5\right)+8x\left(x^2+2x+5\right)+20\left(x^2+2x+5\right)+256}{x^2+2x+5}\\ P\left(x\right)=4\left(x^2+2x+5\right)+\dfrac{256}{x^2+2x+5}\\ \ge2\sqrt{\dfrac{4\left(x^2+2x+5\right)\cdot256}{x^2+2x+5}}=2\sqrt{1024}=64\left(BĐTcosi\right)\)

Dấu \("="\Leftrightarrow4\left(x^2+2x+5\right)=\dfrac{256}{x^2+2x+5}\)

\(\Leftrightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

 

 

 

Minh Hiếu
8 tháng 9 2021 lúc 8:10

P(x)=\(\dfrac{\text{(4x^2+8x^3+20x^2)+(8x^3+16x^2+40x)+(20x^2+40x+100)+256}}{x^2+2x+5}\)

      =(4x^2+8x+20x) +\(\dfrac{256}{x^2+2x+5}\)

áp dụng BĐT Cosi a+b≥\(2\sqrt{ab}\)

=>P(x)≥64

Dấu = xảy ra khi x=-1 hoặc x=3

 

wcdccedc
Xem chi tiết
Phương An
16 tháng 7 2017 lúc 10:22

\(P=\dfrac{4x^4+16x^3+56x^2+80x+356}{x^2+2x+5}\)

\(=\dfrac{\left(4x^4+8x^3+20x^2\right)+\left(8x^3+16x^2+40x\right)+\left(20x^2+40x+100\right)+256}{x^2+2x+5}\)

\(=\left(4x^2+8x+20x\right)+\dfrac{256}{x^2+2x+5}\)

\(\ge2\sqrt{4\left(x^2+2x+5\right)\times\dfrac{256}{x^2+2x+5}}=64\)

Dấu "=" xảy ra khi x = 1 hoặc x = - 3