Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen phuc trung
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Huỳnh Ngọc Hân
31 tháng 7 2018 lúc 15:35

Giả sử 2n+1 và 6n+5 ko phải là 2 số nguyên tố cùng nhau thì:

cho d là ƯCLN của chúng và d>1

ta có:2n+1chia hết cho d,vậy 6n+3 cũng chia hết cho d

suy ra:6n+5-(6n+3) chia hết cho d

vậy 2 chia hết cho d

mà các ƯC của 2 là :2 và 1

mà cả 2 số đã cho đều là số lẻ,nên d phải bằng 1

nhưng như vậy thì trái với giả thuyết mà chúng ta đặt ra ban đầu

vậy 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau

Nguyễn Thị Hường
Xem chi tiết
pham  thanh trieu
Xem chi tiết
Đinh Đức Hùng
17 tháng 3 2017 lúc 12:49

Gọi \(d\inƯCLN\left(2n+1;6n+5\right)\) nên ta có :

\(2n+1⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow3\left(2n+1\right)⋮d\) và \(6n+5⋮d\)

\(\Leftrightarrow6n+3⋮d\) và \(6n+5⋮d\)

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow2⋮d\Rightarrow d=2\)

Mà \(2n+1;6n+5\) là các số lẻ nên không thể có ước là 2

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(6n+5\) là nguyên tố cùng nhau

Barbie
Xem chi tiết
Thanh Tùng DZ
31 tháng 12 2017 lúc 16:41

gọi d \(\in\)BC ( 2n + 1, 6n + 5 ) thì 2n + 1 \(⋮\)d ; 6n + 5 \(⋮\)d

Do đó ( 6n + 5 ) - 3 . ( 2n + 1 ) \(⋮\)\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\in\){ 1 ; 2 }

d là ước của số lẻ 2n + 1 nên d \(\ne\)

Vậy d = 1 

Do đó ( 2n + 1 ; 6n + 5 ) = 1

Vũ Thị Thanh
25 tháng 3 2021 lúc 19:46

chu pa pi mu nhà nhố

Khách vãng lai đã xóa
Minh Nguyệt
Xem chi tiết
Cậu Bé Ngu Ngơ
21 tháng 12 2017 lúc 8:38

Gọi \(d\)là ước chung lớn nhất của 2n+1 và 6n+4(\(d\in\)N*)

Khi đó \(\hept{\begin{cases}2n+1⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3\cdot\left(2n+1\right)⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Leftrightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)(Vì \(d\in\)N*)

\(\Rightarrowđpcm\)

Vũ Thị Thanh
25 tháng 3 2021 lúc 19:47

amazing goodjob

Khách vãng lai đã xóa
Minh Anh Đào
Xem chi tiết
Đỗ Ngọc Hà Giang
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Akai Haruma
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Akai Haruma
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Dream
25 tháng 12 2021 lúc 10:30

Thank you

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 13:15

Trần Hà Lan
31 tháng 10 2024 lúc 20:57

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau