Giải phương trình: \(\sqrt{x+12}=\sqrt{x-3}+\sqrt{2x+1}\)
Giải phương trình : \(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\)
Lời giải:
Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:
\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)
Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.
Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$
$\Leftrightarrow x=2x-3=3$ (thỏa mãn)
Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$
$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)
Vậy $x=3$ hoặc $x=1$
Giải phương trình: \(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\)
\(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\left(1\right)\)
\(\left(1\right)\Leftrightarrow x+2x-3+3.\sqrt[3]{x\left(2x-3\right)}.\left(\sqrt[3]{x}+\sqrt[3]{2x-3}\right)=12x-12\)
\(\Rightarrow\sqrt[3]{12x\left(x-1\right)\left(2x-3\right)}=3x-3\)
\(\Leftrightarrow12x\left(x-1\right)\left(2x-3\right)=[3\left(x-1\right)]^3\)
\(\Leftrightarrow12x\left(2x^2-5x+3\right)=27\left(x^3-3x^2+3x-1\right)\)
\(\Leftrightarrow24x^3-60x^2+36x=27x^3-81x^2+81x-27\)
\(\Leftrightarrow3x^3-21x^2+45x-27=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\). Thử lại ta thấy cả x=1;x=3 đều t/m bài toán
Vậy, pt có tập nghiệm là S={1;3}
Giải các phương trình sau:
a) \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \)
b) \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \)
c) \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \)
d) \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\)
a) \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \)
\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)
\( \Rightarrow x = - \frac{1}{4}\) và \(x = \frac{5}{2}\)
Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình
Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)
b) \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \)
\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)
\( \Rightarrow x = - 3\) và \(x = 4\)
Thay vào phương trình \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \) ta thấy không có nghiệm nào thỏa mãn
Vậy phương trình đã cho vô nghiệm
c) \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \)
\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)
\( \Rightarrow x = - 1\) và \(x = 3\)
Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình
Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) là \(x = - 1\) và \(x = 3\)
d) \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\)
\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1} = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)
\( \Rightarrow x = - 4\) và \(x = \frac{1}{2}\)
Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\) ta thấy chỉ có nghiệm \(x = - 4\) thỏa mãn phương trình
Vậy nghiệm của phương trình trên là \(x = - 4\)
giúp em bài này ạ. Giải phương trình
\(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\)
Lời giải:
Đặt $\sqrt[3]{x}=a; \sqrt[3]{2x-3}=b$. Ta có:
\(\left\{\begin{matrix} a+b=\sqrt[3]{4(a^3+b^3)}\\ 2a^3-b^3=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^3+b^3+3ab(a+b)=4(a^3+b^3)\\ 2a^3-b^3=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^3+b^3=ab(a+b)\\ 2a^3-b^3=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} (a-b)^2(a+b)=0(1)\\ 2a^3-b^3=3(2)\end{matrix}\right.\)
Từ $(1)$ suy ra $a=b$ hoặc $a=-b$.
Nếu $a=b$. Thay vào $(2)$ suy ra $a^3=b^3=3$
$\Leftrightarrow x=2x-3=3$ (thỏa mãn)
Nếu $a=-b$. Thay vào $(2)$ suy ra $a^3=1; b^3=-1$
$\Leftrightarrow x=1; 2x-3=-1$ (thỏa mãn)
Vậy $x=3$ hoặc $x=1$
Giải phương trình
1) \(\sqrt{x+1}+\sqrt{2x+3}=\sqrt{3x}+\sqrt{2x-2}\)
2) \(\sqrt{3}-x=\sqrt[4]{49-4\sqrt{3}.x^3-12\sqrt{3}.x}\)
giải giúp mình cần gấp lắm
Giải phương trình: \(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\)
Giải phương trình: \(\sqrt[3]{x}+\sqrt[3]{2x-3}=\sqrt[3]{12\left(x-1\right)}\)
giải phương trình vô tỉ
1,\(\sqrt{1-\sqrt{x}}+\sqrt{4+x}=3\)
2,\(\sqrt{x+1}+\sqrt[3]{7-x}=2\)
3,\(\sqrt{x}+\sqrt{x+1}=\sqrt{x-1}+\sqrt{x+4}\)
4,\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
5,\(\sqrt[3]{x-1}+\sqrt[3]{x-2}=\sqrt[3]{2x-3}\)
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
a, rút gọn biểu thức: A= \(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)
b, giải phương trình: x2-2x-4=0
c, giải hệ phương trình: \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\)
????
xin lỗi nha !
mình mới học lớp 3
mà bài này khó nắm
a.A=\(\sqrt{12}-\sqrt{27}+\sqrt{4+2\sqrt{3}}\)\(=2\sqrt{3}-3\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}\) \(=-\sqrt{3}+\sqrt{3}+1\) =1 b. \(x^2-2x-4=0\) Δ= \(\left(-2\right)^2-4\times1\times-4=20>0\) \(\Rightarrow\) phương trình có 2 nghiệm pb \(x1=\dfrac{2+\sqrt{20}}{2}=1+\sqrt{5}\) \(x2=\dfrac{2-\sqrt{20}}{2}=1-\sqrt{5}\) c. \(\left\{{}\begin{matrix}2x-y=5\\x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=5\\2x+6y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7y=7\\2x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp