Tìm các số nguyên x, y biết:
3xy + x - y = 0
tìm các số nguyên x;y biết 3xy+x-y-6=0
giải giùm mik ạ
Dùng phương trình nghiệm nguyên:
Ta có: 3xy+x-y-6=0
(3xy+x)-y=6
x(3y+1)-1/3(3y+1)=6-1/3
(x-1/3)(3y+1)=17/3
3(x-1/3)(3y+1)=17
(3x-1)(3y+1)=17
Vì x, y thuộc Z nên 17 chia hết cho 3x-1, 3y+1
Nên 3x-1, 3y+1 thuộc Ư(17)={1, -1, 17, -17} nên thay vào ta được tương ứng:( Lưu ý (3x-1)(3y+1)=17 )
x= 0; 2/3.
y= -6; 16/3
( Ta thấy chỉ có x=0; y=-6 thỏa mãn x, y thuộc Z )
Tìm các số nguyên x,y biết ; 2xy+x^2+3y-3xy-3x=0
Tìm các số nguyên x, y biết:
2x2 + 3xy + y2 - 4x - 3y + 1 = 0
1/tìm các cặp số nguyên (x;y) thỏa mãn:\(5x^2+2xy+y^2-4x-40=0\)0
2/tìm các số nguyên x;y thỏa mãn:\(3xy+x+15y-44=0\)
3/gtp nghiệm nguyên :\(2x^2+3xy-2y^2=7\)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Tìm các cặp số nguyên xy, biết:
a) | x - 1 | × | y + 1 | = 2
b) 3xy - 3x - y = 0
Tìm các số nguyên dương x,y thỏa mãn: 3xy + x +15y -44 =0
3xy + x + 15y - 44 = 0
<=> x(3y + 1) = 44 - 15y
<=> x = \(\frac{44-15y}{3y+1}=\:-5+\frac{49}{3y+1}\)
Để x nguyên dương thì trước tiên 3y + 1 phải là ước nguyên dương của 49 hay
(3y + 1) = (1; 7; 49)
<=> y = (0; 2; 16)
Chỉ có y = 2, x = 2 là thỏa đề bài
0 không phải là số nguyên dương còn với y = 16 thì x = -4 là số nguyên âm nên không được
tìm các số nguyên dương x, y thỏa mãn: 3xy+x+15y-44=0
\(3xy+x+15y-44=0\)
\(\Leftrightarrow\) \(3xy+x+15y=44\)
\(\Leftrightarrow\) \(3xy+x+15y+5=49\)
\(\Leftrightarrow\) \(x\left(3y+1\right)+5\left(3y+1\right)=49\)
\(\Leftrightarrow\) \(\left(x+5\right)\left(3y+1\right)=49\)
Vì \(x,y\) nguyên dương nên \(x+5;\) \(3y+1\) nguyên dương và lớn hơn \(1\). Do đó,
\(^{x+5=7}_{3y+1=7}\) \(\Leftrightarrow\) \(^{x=2}_{y=2}\)
Vậy, phương trình có nghiệm nguyên là \(x=y=2\) (thỏa mãn \(x,y\in Z\) )
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
y=\(\frac{3x^2+10x+11}{x^2+2x+3}\)
Tìm các số nguyên dương x,y thỏa mãn 3xy+x+15y-44=0
3xy+x+15y-44=0
=> (3xy+15y)+(x+5)-49=0
=> 3y.(x+5)+(x+5)=49
=> (x+5)(3y+1)=49
Do x,y là số nguyên dương nên x+5 và 3y+1 là ước dương của 49
Ta có bảng sau:
| x+5 | 1 | 7 | 49 |
| x | -4 | 2 | 44 |
| 3y+1 | 49 | 7 | 1 |
| y | 16 | 2 | 0 |
Mà x, y là số nguyên dương nên (x;y) cần tìm là (2;2)
Tìm các số nguyên dương x,y thỏa mãn 3xy+x+15y-44=0
Tìm các số nguyên dương x,y thỏa mãn: 3xy+x+15y-44=0