cho x2 -y2 -z2=0.
CMR: (5x-3y+4z)(5x-3y-4z) là một số chính phương
1)Cmr nếu a-b=1 thì (a+b)(a2+b2)(a4+b4)...(a32+b32) =a64-b64
2) Cho x2=y2+z2. CM (5x-3y+4z)(5x-3y-4z)=(3x-5y)2
1) Ta có: \(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^4-b^4\right)\left(a^4+b^4\right)\cdot...\cdot\left(a^{32}+b^{32}\right)\)
\(=\left(a^8-b^8\right)\left(a^8+b^8\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{16}-b^{16}\right)\left(a^{16}+b^{16}\right)\left(a^{32}+b^{32}\right)\)
\(=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\)
\(=a^{64}-b^{64}\)
cho x2-y2-z2=0.CMR:
(5x-3y+4z).(5x-37-4z) là số chính phương
CMR : Nếu x^2 - y^2 - z^2 = 0 thì ( 5x-3y+4z ) . ( 5x-3y - 4z ) = ( 3x - 5y )^2
Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)
Biến đổi vế trái ta có :
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2\) ( ĐPCM)
x^2-y^2-z^2=0.CMR
(5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
CMR: (5x-3y+4z)(5x-3y-4z)=(3x-5y)^2
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)
\(=\left(3x-5y\right)^2-16z^2\)
Đẳng thức chỉ đúng khi \(z=0\)
Ta có:
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)\)
\(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\left(#\right)\)
Vì \(x^2=y^2+z^2\Rightarrow\left(#\right)=25x^2-30xy+9y^2-16\left(x^2-y^2\right)=\left(3x-5y\right)^2\)
Cho \(x^2-y^2-z^2=0\)
CMR:(5x-3y+4z)(5x-3y-4z)=\(\left(3x-5y\right)^2\)
Ta có:
\(x^2-y^2-z^2=0\)
\(16x^2-16y^2-16z^2=0\)
\(25x^2-9x^2+9y^2-25y^2-16z^2+30xy-30xy=0\)
\(\left(5x-3y\right)^2-16z^2= \left(3x-5y\right)^2\)
\(\left(5x-3y-4z\right)\left(5x-3y+4z\right)=\left(3x-5y\right)^2\)
Cho (5x-3y+4z).(5x-3y-4z)=(3x-5y)^2
CMR: x^2=y^2+z^2
Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)
\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)
(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2
(5x - 3y)2 - 16z2 = (3x - 5y)2
25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2
16x2 + 9y2 - 16z2 - 25y2 = 0
16x2 - 16y2 - 16z2 = 0
x2 - y2 - z2 = 0
x2 = y2 + z2
cho x2-y2-z2=0.CMR
(5x-3y+4z).(5x-37-4z)=(3x-5y)2
Vì x2 - y2 - z2 = 0 => x2 - y2 = z2
Biến đổi vế trái ta có:
(5x-3y+4z)(5x-37-4z)=(3x-5y)2 - 16z2
=25x2 - 30xy + 9y2 - 16(x2 - y2)
= 25x2 - 30xy + 9y2 - 16x2 + 16y2
= 9x2 - 30xy + 25y2
= (3x-5y)2 (đpcm)
Cho mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 x - 2 y + 4 z + 2 = 0 và mặt phẳng P : 2 x - 3 y + z - m = 0 . Mặt cầu (S) và mặt phẳng (P) có giao nhau khi:
A. m < - 3 - 2 14 h o ặ c m > - 3 + 2 14
B. - 3 - 2 14 ≤ m ≤ - 3 + 2 14
C. - 2 - 3 14 ≤ m ≤ - 2 + 3 14
D. - 2 - 3 14 < m < - 2 + 3 14