Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Thị Kiều Oanh
Xem chi tiết
Băng băng
18 tháng 10 2017 lúc 13:30

Dễ ợt ak

Trương Thị Kiều Oanh
Xem chi tiết
 Mashiro Shiina
18 tháng 10 2017 lúc 17:50

Hướng dẫn thôi nhé:

Lời giải:

a)\(xy+x+y+1=0\)

\(\Rightarrow x\left(y+1\right)+1\left(y+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\)

b)\(xy-x-y=0\)

\(\Rightarrow xy-x-y+1=1\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)

c)\(xy-x-y-1=0\)

\(\Rightarrow xy-x-y+1=2\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=2\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)

d) \(xy-x-y+1=0\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=0\)

e)\(xy+2x+y+11=0\)

\(\Rightarrow xy+2x+y+2=-9\)

\(\Rightarrow x\left(y+2\right)+1\left(y+2\right)=-9\)

\(\Rightarrow\left(x+1\right)\left(y+2\right)=-9\)

Quân Nguyễn
Xem chi tiết
HT.Phong (9A5)
1 tháng 8 2023 lúc 12:47

a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)

\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)

\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)

\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)

c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)

\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)

\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)

\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)

d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)

\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)

\(D=0\)

Trang Nguyễn
Xem chi tiết
nguyễn đức mạnh
13 tháng 2 2018 lúc 20:09

1 , sai đề

2/ xy-x-y+1=0

x(y-1)-(y-1)=0

(y-1)(x-1)=0

->y-1=o hoặc x-1=0

y-1=0            y=1

x-1=0           x=1

vậy x=y=1

3, 

Dương Thị Hồng Nhung
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Lê Song Phương
17 tháng 10 2023 lúc 19:20

\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Ta có đpcm

Mirai Neko
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết
Cathy Trang
Xem chi tiết
gãi hộ cái đít
27 tháng 2 2021 lúc 12:38

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:

\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);

\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)

Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2

Vậy Max A = 16

Chu Văn Hưng _
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
5 tháng 4 2020 lúc 16:29

\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)

\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\) 

\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)

\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)

\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)

\(\Rightarrow B=4\)

Khách vãng lai đã xóa