(4x+4)(3x+3)=32
3x-21/3 + 4x-32/2 = 5x-37/4 + 9x-33/6
3x-21/3+4x-32/2 = 5x-37/4 +9x-33/6
7x+(-21/3-32/2) = 14x+(-37/4 - 33/6 )
7x+(-42/6-96/6) = 14x+ (-111/12 - 66/12)
7x+(-138/6) =14x + (-177/12)
7x - 14x =138/6 +(-177/12)
-7x = 276/12+ (-177/12)
-7x = 99/12
-x = 23/28
x = -23/28
bài 7
4x3 + 12 = 120
b, ( x - 4 )2 = 64
c, ( x + 1 )3 - 2 = 52
d, 136 - ( x + 5)2 = 100
e, 4x = 16
f, 7x. 3 - 147 = 0
g, 2x+3 - 15 = 17
h, 52x-4. 4 = 102
i, (32 - 4x)(7 - x) = 0
k, ( 8 - x)(10 - 2x) = 0
m, 3x + 3x+1 = 108
n, 5x+2 + 5x+1 = 750
a: \(4x^3+12=120\)
=>\(4x^3=108\)
=>\(x^3=27=3^3\)
=>x=3
b: \(\left(x-4\right)^2=64\)
=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)
c: (x+1)^3-2=5^2
=>\(\left(x+1\right)^3=25+2=27\)
=>x+1=3
=>x=2
d: 136-(x+5)^2=100
=>(x+5)^2=36
=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)
e: \(4^x=16\)
=>\(4^x=4^2\)
=>x=2
f: \(7^x\cdot3-147=0\)
=>\(3\cdot7^x=147\)
=>\(7^x=49\)
=>x=2
g: \(2^{x+3}-15=17\)
=>\(2^{x+3}=32\)
=>x+3=5
=>x=2
h: \(5^{2x-4}\cdot4=10^2\)
=>\(5^{2x-4}=\dfrac{100}{4}=25\)
=>2x-4=2
=>2x=6
=>x=3
i: (32-4x)(7-x)=0
=>(4x-32)(x-7)=0
=>4(x-8)*(x-7)=0
=>(x-8)(x-7)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)
k: (8-x)(10-2x)=0
=>(x-8)(x-5)=0
=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)
m: \(3^x+3^{x+1}=108\)
=>\(3^x+3^x\cdot3=108\)
=>\(4\cdot3^x=108\)
=>\(3^x=27\)
=>x=3
n: \(5^{x+2}+5^{x+1}=750\)
=>\(5^x\cdot25+5^x\cdot5=750\)
=>\(5^x\cdot30=750\)
=>\(5^x=25\)
=>x=2
3x-21/3 + 4x-32/2 = 5x-37/4 + 9x-33/6
x+5/4 + x+6/3 + x+7/2 + x+8/1 = -4
Trong mỗi đẳng thức sau, hãy tìm đa thức M:
a) 3 x 2 − 2 x − 5 M = 3 x − 5 2 x − 3 với x ≠ − 1 và x ≠ 3 2 ;
b) 2 x 2 + 3 x − 2 x 2 − 4 = M x 2 − 4 x + 4 với x ≠ ± 2 .
a) Kết quả M = (x + l)(2x - 3);
b) Kết quả M = (2x - 1)(x - 2).
Tìm số tự nhiên x, biết:
a) 2 x : 4 = 3 2 ;
b) 3 x : 3 2 = 243 ;
c) 256 : 4 x = 4 2 .
a) Ta có : 2 x : 2 2 = 2 5 nên x = 7.
b) Ta có: 3 x : 3 2 = 3 5 nên x = 7.
c) Ta có : 4 4 : 4 x = 4 2 nên x = 2.
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
(5-2x)/3=(4x-1)/-5
(12-3x)/32=6/(4-x)
(10-2x)/6=27/(5-x)
a, \(\frac{\left(5-2x\right)}{3}=\frac{\left(4x-1\right)}{-5}\)
\(\Leftrightarrow-5(5-2x)=3\left(4x-1\right)\)
\(\Leftrightarrow10x-25=12x-3\)
\(\Leftrightarrow10x-12x=25-3\)
\(\Leftrightarrow-2x=22\)
\(\Leftrightarrow x=-11\)
b, \(\frac{\left(12-3x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow\frac{3\left(4-x\right)}{32}=\frac{6}{\left(4-x\right)}\)
\(\Leftrightarrow3(4-x)\left(4-x\right)=32.6\)
\(\Leftrightarrow(4-x)\left(4-x\right)=32.2\)
\(\Leftrightarrow(4-x)^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=8\\4-x=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=12\end{cases}}\)
c, \(\frac{\left(10-2x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow\frac{2\left(5-x\right)}{6}=\frac{27}{\left(5-x\right)}\)
\(\Leftrightarrow2(5-x)\left(5-x\right)=27.6\)
\(\Leftrightarrow(5-x)\left(5-x\right)=27.3\)
\(\Leftrightarrow(5-x)^2=81\)
\(\Leftrightarrow\orbr{\begin{cases}5-x=9\\5-x=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=14\end{cases}}\)
a, \(\frac{5-2x}{3}=\frac{4x-1}{-5}\Leftrightarrow-25+10x=12x-3\Leftrightarrow-22-2x=0\Leftrightarrow x=-11\)
b, \(\frac{12-3x}{32}=\frac{6}{4-x}\Leftrightarrow\frac{12-3x}{32}=\frac{18}{12-3x}\)
\(\Leftrightarrow\left(12-3x\right)^2=576\Leftrightarrow12-3x=\pm2\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=\frac{14}{3}\end{cases}}\)
c, \(\frac{10-2x}{6}=\frac{27}{5-x}\Leftrightarrow\frac{10-2x}{6}=\frac{54}{10-2x}\)
\(\Leftrightarrow\left(10-2x\right)^2=324\Leftrightarrow10-2x=\pm18\)\(\Leftrightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
\(\frac{5-2x}{3}=\frac{4x-1}{-5}\)
=> -5(5 - 2x) = 3(4x - 1)
=> -25 + 10x = 12x - 3
=> -25 + 10x - 12x +3 = 0
=> (-25 + 3) + (10x - 12x) = 0
=> -22 - 2x = 0
=> 2x = -22
=> x = -11
\(\frac{12-3x}{32}=\frac{6}{4-x}\)
=> (12 - 3x)(4 - x) = 32.6
=> 12(4 - x) - 3x(4 - x) = 192
=> 48 - 12x - 12x + 3x2 = 192
=> 48 - 24x + 3x2 = 192
=> 3(x2 - 8x + 16) = 192
=> x2 - 8x + 16 = 64
=> x2 - 4x - 4x + 16 = 64
=> x(x - 4) - 4(x - 4) = 64
=> (x - 4)2 = 64
=> (x - 4)2 = (\(\pm\)8)2
=> \(\orbr{\begin{cases}x-4=8\\x-4=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=12\\x=-4\end{cases}}\)
\(\frac{10-2x}{6}=\frac{27}{5-x}\)
=> (10 - 2x)(5 - x) = 27.6
=> 10(5 - x) - 2x(5 - x) = 162
=> 50 - 10x - 10x + 2x2 = 162
=> 50 - 20x + 2x2 = 162
=> 2(x2 - 10x + 25) = 162
=> x2 - 10x + 25 = 81
=> x2 - 5x - 5x + 25 = 81
=> x(x - 5) - 5(x - 5) = 81
=> (x - 5)2 = 81
=> (x - 5)2 = (\(\pm\)9)2
=> \(\orbr{\begin{cases}x-5=9\\x-5=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)
a/ 16x-5x2-3
b/ x2+4x+32
c/ x5-3x4+3x3-x2