so sánh 2√3 và 3√2
so sánh : 2^225 và 3^151 ( so sánh 2 mũ 225 và 3 mũ 151)
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1
Mà n thuộc N => 2n - 1 > hoặc = -1
=> 2n - 1 thuộc {-1 ; 1 ; 3}
=> 2n thuộc {0 ; 2 ; 4}
=> n thuộc {0 ; 1 ; 2}
2225 = (23)75 = 875
3151 > 3150 = (32)75 = 975
=> 3151 > 975 > 875
=> 3151 > 2225
Hoạt động 4
Thực hiện các hoạt động sau:
a) So sánh: \({2^{\frac{6}{3}}}\) và \({2^2}\)
b) So sánh: \({2^{\frac{6}{3}}}\) và \(\sqrt[3]{{{2^6}}}\)
a: \(2^{\dfrac{6}{3}}=2^2\)
b: \(2^{\dfrac{6}{3}}=2^2=4\)
\(\sqrt[3]{2^6}=\sqrt[3]{64}=4\)
=>\(2^{\dfrac{6}{3}}=\sqrt[3]{2^6}\)
em hãy so sánh các phân số sau và ghi vào vở:
-11/12 và 17/-18; -14/21 và -60/-72
em hãy so sánh các phân số sau với 0 : 3/5; -2/-3; -3/5; 2/-7
từ đó hãy so sánh: 3/5 và 2/7; -2/-3 và -3/5
So sánh 3^65 và 5^43; so sánh 3^42 và 2^63
Câu 1 / so sánh 2 lũy thừa 3^23 và 5^12
Câu 2 / so sánh 2 lũy thừa 3^36 và 2^8.11^4
1 so sánh \(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)
\(\dfrac{1}{5^{199}}\) và\(\dfrac{1}{3^{300}}\)
2 so sánh
5\(^{20}\)và 3\(^{34}\)
(-5)\(^{39}\)và -2\(^{91}\)
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
a) so sánh 2^335 và 3^225
b) so sánh 3^147 và 5^98
so sánh 2^3^2^3 và 3^2^3^2
So sánh
1, Sắp xếp các số sau theo thứ tự tăng dần
-3/4; 7/4 ; -9/4 ; 0 ; 3/5 ; -100
2. So sánh
a, (2/3)^3 và (4/9)^2
b, 2^600 và 3^400
c, (-2)^300 và (-3)^200
Tính và so sánh kết quả: (-2) + (-3) và (-3) + (-2)
(-2) + (-3) = -5 (-3) + (-2) = -5
Kết quả của hai phép tính là bằng nhau