Tìm GTLN của A
A = \(\sqrt{3-x}+\sqrt{x+1}\)
Mọi người giúp e với e cần gấp ạ!!
Tìm giá trị nhỏ nhất của
a)E=\(\dfrac{x-2\sqrt{x}+4}{\sqrt{x}}\)khi \(x\ge9\)
b)F=\(\dfrac{3x+\sqrt{x}+1}{\sqrt{x}}\) khi x≥\(\dfrac{1}{2}\)
Mọi người giúp em với e cần gấp ạ
Có bài ngược của bài này, bạn đăng và đã có lời giải thì chỉ cần đảo lại đáp án là được.
\(E=\sqrt{x}+\dfrac{4}{\sqrt{x}}-2=\dfrac{4\sqrt{x}}{9}+\dfrac{4}{\sqrt{x}}+\dfrac{5}{9}.\sqrt{x}-2\)
\(E\ge2\sqrt{\dfrac{16\sqrt{x}}{9\sqrt{x}}}+\dfrac{5}{9}.\sqrt{9}-2=\dfrac{7}{3}\)
\(E_{min}=\dfrac{7}{3}\) khi \(x=9\)
\(F=3\sqrt{x}+\dfrac{1}{\sqrt{x}}+1=2\sqrt{x}+\dfrac{1}{\sqrt{x}}+\sqrt{x}+1\)
\(F\ge2\sqrt{\dfrac{2\sqrt{x}}{\sqrt{x}}}+1.\sqrt{\dfrac{1}{2}}+1=\dfrac{2+5\sqrt{2}}{2}\)
\(F_{min}=\dfrac{2+5\sqrt{2}}{2}\) khi \(x=\dfrac{1}{2}\)
Cho x, y không âm và x+y ≤1. Tìm GTLN của \(A=\sqrt{1+4x^2}+\sqrt{1+4y^2}+3\sqrt{x}+3\sqrt{y}\)
Mọi người giúp em với, xin cảm ơn ạ.
tìm GTLN cuủa A=\(\dfrac{\sqrt{x-4}}{3x}\)
MN giúp e với e cần gấp à
\(A=\dfrac{2.2\sqrt{x-4}}{12x}\le\dfrac{2^2+x-4}{12x}=\dfrac{1}{12}\)
\(A_{max}=\dfrac{1}{12}\) khi \(x=8\)
Ai giúp em bài này với ạ, em đang cần gấp
Tìm gtln hoặc gtnn
\(E=\sqrt{x}+2\sqrt{1-x}\)
\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)
Mà ta có điều kiện là \(0\le x\le1\)
=> E \(\ge1\)
Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)
Đạt GTNN là 1 khi x = 1
tìm GTNN của M=\(\dfrac{2\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\) với x≥0,x≠1,x≠4
MN giúp e với e cần rất gấp ạ
Bài 1: Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B= \(\sqrt{9+4x-x^2}\)
Bài 2: Tìm GTLN của
a) C= \(\sqrt{x}+x\)
b) C= \(x+\sqrt{3-x}\)
Bài 3: Tìm GTNN của
a) E= \(x-\sqrt{x-2015}\)
b) F= \(\sqrt{x^2-4x+4}+\sqrt{x^2+10x+25}\)
Mọi người giúp mình với. Mình cảm ơn trước ạ!
Mọi người ơi giúp mk vs ạ mk đag cần gấp!
câu 1 Tìm x biết
a)\(\sqrt{2\text{x}-1}=\sqrt{5}\)
b)\(\sqrt{x-10}=-2\)
c)\(\sqrt{\left(x-5\right)}=3\)
a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
b) \(\sqrt{x-10}=-2\)
⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm
c) \(\sqrt{\left(x-5\right)^2}=3\)
\(\Leftrightarrow\left|x-5\right|=3\)
TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)
Pt trở thành:
\(x-5=3\) (ĐK: \(x\ge5\))
\(\Leftrightarrow x=3+5\)
\(\Leftrightarrow x=8\left(tm\right)\)
TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)
Pt trở thành:
\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))
\(\Leftrightarrow-x+5=3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy: \(S=\left\{2;8\right\}\)
a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2
\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)
b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10
Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm
c/ ĐKXĐ: x - 5 >=0 <=> x >= 5
\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)
Cho biểu thức A=\((\sqrt{8-\sqrt{12}})(\sqrt{2}+\sqrt{3})\) B=\(\frac{1}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\)
a) Tính giá trị của biểu thức A
b) Tìm x để A=B
Mình đang cần gấp, mọi người giúp với ạ !
Tìm GTLN,GTNN :
a) \(A=2x-6\sqrt{x}-1\)
b) \(C=\frac{1}{-2x+4\sqrt{x}+3}\)
c) \(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
d) \(F=\sqrt{2x-7}+\sqrt{5-2x}\)
e) \(A=-3x+6\sqrt{x}+3\)
h) \(E=\sqrt{2x+1}-\sqrt{2x-8}\)
i) \(F=\sqrt{3x-2}+\sqrt{5-3x}\)
mình cần gấp hôm nay ạ, giúp mình với ạ
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt