A=1^3+2^3+3^3+...+99^3+100^3
Rút gọn
A= 2^100+2^99+2^98.....+2+1
B=3^100+3^99+3^98....+3+1
C=4^100+4^99+....+4+1
D=2^100- 2^99+....+2^2 - 2 + 1
E=3^100 - 3^99 + 3^98....- 3 +1
Thu gọn
M= 2 + 2^2 + 2^3 ....+ 2^100
Cho A =2+2^2+2^3+....2^100. Tìm số tự nhiên x sao cho A + 1 = 2x
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
Tính
A=1.(100-1)+2.(100-2)+3.(100-3)+..............+99.(100-99)
B=1.(100+1)+2.(100+2)+3.(100+3)+...........+99.(100+99)
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow3A+A=\left(...\right)+\left(...\right)\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3.4A=3-1+\frac{1}{3}-...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow12A+4A=\left(...\right)+\left(...\right)\)
\(\Rightarrow16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}< 3\)
\(\Rightarrow A< \frac{3}{16}\)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+.....+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\) Chứng minh A < \(\dfrac{3}{16}\)
2/ Cho B=(\(\dfrac{1}{2^2}\)-1)(\(\dfrac{1}{3^2}\)-1)....(\(\dfrac{1}{100^2}\)-1) So sánh B và \(\dfrac{-1}{2}\)
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
1+1+1+1+2+2+2+2+3+3+3+3+...+99+99+99+99+100+100+100+100=?
=========================
==========================ko bt
( ;-; )
1/ Cho A= \(\dfrac{1}{3}\)-\(\dfrac{2}{3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{99}{3^{99}}\)-\(\dfrac{100}{3^{100}}\)
c/m A<\(\dfrac{3}{16}\)
Lời giải:
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow 16A=12A+4A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}<3\)
\(\Rightarrow A< \frac{3}{16}\)
B=3^100-3^99-3^98-..-3-1
B=3^100-(3^99+3^98+...+3+1)
ta có:M=3^99+3^98+..+3+1
3M=3^100+3^98+...+3^2+3
2M=3M-M=3^100+3^99+3^98+...+3^2+3-3^99+3^98+...+1
2M=3^100-1
=>B=3^100-3^100+1:2
B=0+1/2
B=1/2
AI MUỐN KẾT BẠN VỚI MÌNH KHÔNG VẬY ?
Tính giá trị biểu thức
a, A = (1 - 1/1+2) . (1 - 1/1+2+3) . (1- 1/1+2+3+4) . ... .(1- 1/1+2+...+100)
b, B = (2/3+ 3/4 +...+99/100).(1/2+2/3+...+98/99) - (1/2+2/3+...+99/100).(2/3+3/4+...+98/99)
c, C = \(\frac{3^3+1^3}{2^3-1^3}+\frac{5^3+2^3}{3^3-2^3}+\frac{7^3+3^3}{4^3-3^3}+...+\frac{41^3+20^3}{21^3-20^3}\)
ềdfđừytretwrerfwrevcreerwaruircewtdyererrrrrrrrrrrrrrrrdbrbr trưewyt ưt rtf gygr frirfy gfyrgfyur uỷ gyurg rfuy frg egfyryfyrty trg r rei eoer7 87re r7ye7i t 87rt 7 t ryigr yyrggfygfhdg gfhg gf fgg jdfgjh f fggfgfg jffg jfg f gfg fjhg hjfg gfsdj fgdj gfdjfgdjhf gjhg f gfg fk f fjk hjkfghjkfg h hjyjj ỵthj