Tính \(A=\dfrac{1+\left(1+2\right)+...+\left(1+2+...+98\right)}{1.2+2.3+...+98.99}\)
Tính A : \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+......+\left(1+2+3+....+98\right)}{1.2+2.3+3.4+.....98.99}\)
Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Tính :\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+4.5+...+98.99}\)
G= \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)
G= \(\frac{\frac{1.2}{2}+\frac{2.3}{2}+\frac{3.4}{2}+...+\frac{98.99}{2}}{1.2+2.3+3.4+...+98.99}\)
G = \(\frac{\frac{1.2+2.3+...+98.99}{2}}{1.2+2.3+3.4+...+98.99}\)
G= \(\frac{1}{2}\)
A = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}\)= ?
\(2A=\frac{1.2+2.3+3.4+...+98.99}{1.2+2.3+3.4+...+98.99}\)
\(2A=1\)
\(A=\frac{1}{2}\)
Tính hợp lí:
a) (100-9)(99-9)(98-9)...(1-9).
b) \(\left(1-\dfrac{1}{100}\right)\left(1-\dfrac{1}{99}\right)...\left(1-\dfrac{1}{2}\right)\)
c) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
b, \(\left(1-\dfrac{1}{100}\right)\left(1-\dfrac{1}{99}\right)...\left(1-\dfrac{1}{2}\right)=\dfrac{99.98...1}{100.99...2}=\dfrac{1}{100}\)
tính
\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99\right)}{1.2+2.3+3.4+...+98.99}\)
Câu hỏi của Nguyễn Hồ Yến Ngân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài bạn làm :)
Tính:
a)\(D\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3..+98\right)}{1.98+2.97+...+98.1}\)
b)chứng minh rằng biểu thức E có giá trị bằng \(\frac{1}{2}\)
\(E=\frac{1.98+2.97+...+98.1}{1.2+2.3+...+98.99}\)
b) Em tham khảo: Câu hỏi của lê chí dũng - Toán lớp 6 - Học toán với OnlineMath
vâng ạ nhưng e cx đg cần câu tl phần a
\(D=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3..+98\right)}{1.98+2.97+...+98.1}\)
\(=\frac{\left(1+1+1...+1\right)+\left(2+2+...2\right)+\left(3+...+3\right)+...+\left(97+97\right)+98}{1.98+2.97+...+98.1}\)
( có 99 số 1; 98 số 2; 87 số 3;...; 2 số 97; 1 số 98)
\(=\frac{1.98+2.97+3.96+...+97.2+98.1}{1.98+2.97+...+98.1}=1\)
tìm x:
a,\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\right).\left(x-1\right)+\dfrac{1}{10}.x=x-\dfrac{9}{10}\)
b,\(\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right).\left(x-2\right)+x=\dfrac{149}{99}.x-\dfrac{98}{99}\)
Tính A biết :
\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{98.99}\right)\left(1-\frac{2}{99.100}\right)\)
Gọi tổng trên là A
A=1/1.2.3+1/2.3.4+1/3.4.5+...1/98.99.100
Ta xét :
1/1.2 ‐ 1/2.3 = 2/1.2.3; 1/2.3 ‐ 1/3.4 = 2/2.3.4;...; 1/98.99 ‐ 1/99.100 = 2/98.99.100
tổng quát: 1/n﴾n+1﴿ ‐ 1/﴾n+1﴿﴾n+2﴿ = 2/n﴾n+1﴿﴾n+2﴿.
Do đó: 2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= ﴾1/1.2 ‐ 1/2.3﴿ + ﴾1/2.3 ‐ 1/3.4﴿ +...+ ﴾1/98.99 ‐ 1/99.100﴿
= 1/1.2 ‐ 1/2.3 + 1/2.3 ‐ 1/3.4 + ... + 1/98.99 ‐ 1/99.100
= 1/1.2 ‐ 1/99.100
= 1/2 ‐ 1/9900
= 4950/9900 ‐ 1/9900
= 4949/9900.
Vậy A = 4949 / 9900
Bn làm sai r . kết quả là \(\frac{101}{297}\) nhưng mik ko bt cách giải thôi
xin lỗi nha,gửi lời giải nhầm người
1, rút gọn
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+....+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{2n+1}{\left[n\left(n+1\right)\right]^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{2n+1}{n^2\left(n^2+2n+1\right)}\)
\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{n^2}-\dfrac{1}{n^2+2n+1}\)
\(=1-\dfrac{1}{n^2+2n+1}\)
\(=\dfrac{n^2+2n}{n^2+2n+1}=\dfrac{n\left(n+2\right)}{\left(n+1\right)^2}\)
Xét thừa số tổng quát:
\(\dfrac{k}{\left(\dfrac{k-1}{2}.\dfrac{k+1}{2}\right)^2}\)\(=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}=\dfrac{k}{\left(\dfrac{\left(k-1\right)\left(k+1\right)}{4}\right)^2}\)
\(=\dfrac{k}{\dfrac{\left[\left(k-1\right)\left(k+1\right)\right]^2}{16}}=\dfrac{k}{\dfrac{\left(k^2-1\right)^2}{16}}=\dfrac{16k}{\left(k^2-1\right)^2}\)
Thay \(k=3;5;....2n+1\) ta được:
\(\dfrac{16.3}{\left(3^2-1\right)^2}+\dfrac{16.5}{\left(5^2-1\right)^2}+....+\dfrac{16.n}{\left(n^2-1\right)^2}\)
\(=16.\left(\dfrac{3}{\left(3^2-1\right)^2}+\dfrac{5}{\left(5^2-1\right)^2}+...+\dfrac{n}{\left(n^2-1\right)^2}\right)\)
\(=16.\left(\dfrac{3}{\left[\left(3-1\right)\left(3+1\right)\right]^2}+\dfrac{5}{\left[\left(5-1\right)\left(5+1\right)\right]^2}+...+\dfrac{n}{\left[\left(n-1\right)\left(n+1\right)\right]^2}\right)\)
\(=16.\left(\dfrac{3}{4.16}+\dfrac{5}{16.36}+...+\dfrac{n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{12}{4.16}+\dfrac{20}{16.36}+...+\dfrac{4n}{\left(n-1\right)^2.\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{1}{4}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{36}+...+\dfrac{1}{\left(n-1\right)^2}-\dfrac{1}{\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{\left(n+1\right)^2}{4\left(n+1\right)^2}-\dfrac{4}{4\left(n+1\right)^2}\right)\)
\(=4.\left(\dfrac{\left(n+1\right)^2-4}{4\left(n+1\right)^2}\right)=\dfrac{4\left(n+1\right)^2-16}{4\left(n+1\right)^2}\)
\(=\dfrac{4\left[\left(n+1\right)^2-4\right]}{4\left(n+1\right)^2}=\dfrac{\left(n+1\right)^2-4}{\left(n+1\right)^2}\)
Chúc bạn học tốt!!!