x,y,z>0 thỏa 3x2 + 4y2 + 5z2 = 2xyz Tìm:
Min P = 3x + 2y +z
Cho x,y,z>0,3x2+4y2+5z2=2xyz.
Tìm Min D =3x+2y+z
Cho x,y,z là các số thực dương thỏa: xy + yz + zx = 2xyz
Tìm MIn của \(P=\frac{x}{z\left(z+x\right)}+\frac{y}{x\left(x+y\right)}+\frac{z}{y\left(y+z\right)}\)
Em thử, sai thì thôi nha, chỗ đặt xong rồi thay vào P em ko biết mình có tính đúng hay sai nữa!
giả thiết \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\).
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\) thì a + b + c = 2; a, b, c > 0 và:
\(P=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{2}{2}=1\)
Đẳng thức xảy ra khi a = b = c = 2/3 hay \(x=y=z=\frac{3}{2}\)
Cho x,y,z là các số dương thỏa mãn :
\(5x^2+2xyz+4y^2+3z^2=60\)
Tìm min của x+y+z
Cho 3 số thực x,y,z thỏa mãn 2x + 2y + z = 4. Tìm giá trị lớn nhất của biểu thức: A= 2xyz + yz + zx
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
bạn vào trang này nhé có bài như thến này đấy
//123doc.org//document/3173507-ren-luyen-chuyen-de-tim-maxmin-on-thi-thpt-quoc-gia.htm
tính diện tích hình vẽ dưới đây
Cho x, y, z thỏa mãn:
x2+2y2+2z2+2xy+2zx-2x+2y-6z+5=0.
Tìm Min A=x2+y2+z2
cho x,y,z >0 thỏa mãn 5x^2+2xyz+4y^2+3z^2=60
tìm GTLN B= x+y+z
cho x,y,z là các số dương thỏa mãn : 1+x+y+z=2xyz
tìm min : \(P=\dfrac{xy}{1+x+y}+\dfrac{yz}{1+y+z}+\dfrac{xz}{1+z+x}\)
\(P=\dfrac{xy}{1+x+y}+\dfrac{yz}{1+y+z}+\dfrac{xz}{1+z+x}\)
\(P+3=\dfrac{xy}{1+x+y}+1+\dfrac{yz}{1+y+z}+1+\dfrac{xz}{1+z+x}+1\)
\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)}{1+x+y}+\dfrac{\left(y+1\right)\left(z+1\right)}{1+y+z}+\dfrac{\left(x+1\right)\left(z+1\right)}{1+z+x}\)
\(P+3=\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{\left(x+1\right)\left(y+1\right)\left(z+1\right)}{\left(y+1\right)\left(1+z+x\right)}\)
\(P+3=\left(x+1\right)\left(y+1\right)\left(z+1\right)\left[\dfrac{1}{\left(1+x+y\right)\left(z+1\right)}+\dfrac{1}{\left(x+1\right)\left(1+y+z\right)}+\dfrac{1}{\left(y+1\right)\left(1+z+x\right)}\right]\)
\(\ge\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\left(1+x+y\right)\left(z+1\right)+\left(x+1\right)\left(1+y+z\right)+\left(y+1\right)\left(1+z+x\right)}\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3x+3y+3z+3}\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2xy+2yz+2xz+3\cdot2xyz}\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\cdot\dfrac{9}{\text{ }2\left(xy+yz+xz+3xyz\right)}\)
Lại có:
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)=xyz+xy+yz+xz+x+y+z+1\)
\(=xyz+xy+yz+xz+2xyz=xy+yz+xz+3xyz\)
\(\Rightarrow P+3\ge\left(xy+yz+xz+3xyz\right)\cdot\dfrac{9}{2\left(xy+yz+xz+3xyz\right)}\)
\(\Rightarrow P+3\ge\dfrac{9}{2}\Rightarrow P\ge\dfrac{9}{2}-3=\dfrac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1+\sqrt{3}}{2}\)
cho x,y,z dương thỏa mãn 5x2+2xyz+4y2+3z2=60
tìm min B= x+y+z
d3.violet.vn//uploads/previews/present/3/770/980/preview.swf