Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinne
Xem chi tiết
Phía sau một cô gái
19 tháng 1 2022 lúc 15:20

Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:

\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)

Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:

\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)

           \(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)

Tương tự:    \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)

Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)

 

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 10 2021 lúc 16:40

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2\left(y+z\right)}{4\left(y+z\right)}}=\dfrac{2x}{2}=x\)

Cmtt \(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y;\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{2\left(x+y+z\right)}{4}\ge x+y+z\\ \Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge x+y+z-\dfrac{x+y+z}{2}=\dfrac{x+y+z}{2}\)

Dấu \("="\Leftrightarrow x=y=z\)

 

Quang Đẹp Trai
Xem chi tiết
Akai Haruma
31 tháng 5 2023 lúc 10:56

Bài này có đúng là của lớp 7 không bạn?

Vua Phá Lưới
Xem chi tiết
Trần Thanh Phương
14 tháng 3 2021 lúc 14:19

Áp dụng BĐT Cauchy:

\(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}\)

\(=\dfrac{x}{\sqrt{x\left(y+z\right)}}+\dfrac{y}{\sqrt{y\left(z+x\right)}}+\dfrac{z}{\sqrt{z\left(x+y\right)}}\)

\(\ge\dfrac{x}{\dfrac{x+y+z}{2}}+\dfrac{y}{\dfrac{x+y+z}{2}}+\dfrac{z}{\dfrac{x+y+z}{2}}\)

\(=\dfrac{2x}{x+y+z}+\dfrac{2y}{x+y+z}+\dfrac{2z}{x+y+z}\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Dấu "=" không xảy ra nên \(\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{z+x}}+\sqrt{\dfrac{z}{x+y}}>2\)

 

Xem chi tiết
Dr.STONE
Xem chi tiết
Nguyễn Chí Thành
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Thành Long
21 tháng 3 2022 lúc 0:29

undefined

Bùi Đức Huy Hoàng
21 tháng 3 2022 lúc 9:19

từ đề bài ta có bất đẳng thức cần chứng minh tương đương: 

\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)

<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)

Xem chi tiết