1. Rút gọn: \(\sqrt{17-4\sqrt{9+4\sqrt{7}}}\)
B 5. Rút gọn các biểu thức sau:
a)\(\sqrt{7+4\sqrt{3}}\) b)\(\sqrt{9-4\sqrt{5}}\)
c)\(\sqrt{14+6\sqrt{5}}\) d)\(\sqrt{17-12\sqrt{2}}\)
a.\(\sqrt{7+4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}=\left|\sqrt{3}+2\right|=\sqrt{3}+2\)
b.\(\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2\)
c.\(\sqrt{14+6\sqrt{5}}=\sqrt{\left(\sqrt{5}+3\right)^2}=\left|\sqrt{5}+3\right|=\sqrt{5}+3\)
d.\(\sqrt{17-12\sqrt{2}}=\sqrt{\left(2\sqrt{2}-3\right)^2}=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
Rút gọn biểu thức:
1) \(\sqrt{9-4\sqrt{5}}+\sqrt{\left(25+1\right)^2}\)
2) \(\dfrac{x^2-5}{x+\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
4) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
1)\(=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{26^2}=\sqrt{5}-2+26=24-\sqrt{5}\)
2) \(=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3) \(=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)\(=\left[{}\begin{matrix}1\left(x>1\right)\\-1\left(x< 1\right)\end{matrix}\right.\)
4) \(=\sqrt{\left(\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}-\sqrt{\left(\sqrt{\dfrac{7}{2}}-\sqrt{\dfrac{1}{2}}\right)^2}=\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{7}{2}}+\sqrt{\dfrac{1}{2}}=2\sqrt{\dfrac{1}{2}}=\sqrt{2}\)
2. \(\dfrac{x^2-5}{x+\sqrt{5}}=\dfrac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
3. \(\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{\sqrt{x^2-2.x.1+1^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{|x-1|}{x-1}=\left[{}\begin{matrix}x-1>0\left(x>1\right)\\x-1< 0\left(x< 1\right)\end{matrix}\right.=\left[{}\begin{matrix}=1\\=\dfrac{x+1}{x-1}\end{matrix}\right.\)
Rút gọn biểu thức sau:
A = \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
B = \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
C = \(\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
D = \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
E = \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
\(\frac{1}{\sqrt{9}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{4}}\)rút gọn
Rút gọn các biểu thức sau:
D = \(\sqrt{9+4\sqrt{2}}-3\)
E = \(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
F = \(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
a: \(=2\sqrt{2}+1-3=2\sqrt{2}-2\)
b: \(=\sqrt{3}+1-2\sqrt{3}-1=-\sqrt{3}\)
c: \(=2-\sqrt{3}+\sqrt{3}-1=1\)
Rút gọn biểu thức.
a) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
b) \(\sqrt{17-3\sqrt{32}}+\sqrt{17-3\sqrt{32}}\)
a: \(=\sqrt{8+2\cdot2\sqrt{2}\cdot\sqrt{5}+5}+\sqrt{8-2\cdot2\sqrt{2}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
b: \(=2\cdot\sqrt{17-3\sqrt{32}}\)
\(=2\cdot\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=2\left(3-2\sqrt{2}\right)=6-4\sqrt{2}\)
Rút gọn
A=\(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)7
B=\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
A= \(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{\left(\sqrt{7}-1\right)^2}=\)\(1+\sqrt{7}+\sqrt{7}-1=2\sqrt{7}\)
\(B=\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
=\(\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=\)\(\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5}\)
Rút gọn :
\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-\dfrac{1}{\sqrt{4}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{9}}\)
\(A=-\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+....-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)
\(A=\sqrt{9}-\sqrt{1}=3-1=2\)
Rút gọn : \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)