Tìm chữ số tận cùng của các lũy thừa sau :
A = \(58^{33}\)
B = \(2^{100}\)
C = \(57^{26}\)
Tìm chữ số tận cùng của các lũy thừa sau :C = \(57^{26}\)
5726 và 726 có cùng chữ số tận cùng
Ta co 726=(74)6 . 72=24016.49
Vi 24016 co chu so tan cung la 1
=> 24016.49 co tan cung la 9
=> C có tận cùng là 9
l-i-k-e mình nhé
Tìm chữ số tận cùng của lũy thừa sau : (33^33)^33
(3333)33 = 331089
Chữ số tận cùng là....
Học tốt!!!
tìm chữ số tận cùng của các lũy thừa sau:
a)A=11^12+12^13+13^14
b)B=22^24+23^25+24^26
Tìm chữ số tận cùng của các lũy thừa sau:
a, 5118 b, 3820
c, 8732 d, 5833
Cho S= 3+32+33+......+3100
a, Chứng minh S chia hết cho 4
b,Chứng minh 25+3 là lũy thừa của 3
c, Tìm chữ chữ số tận cùng của S
Thanh you
a.S=3+32...+3100
=(3+32)+...+(399+3100)
=3(1+3)+...+399(1+3)
=3.4+...+399.4
=4(3+...+399)\(⋮\)4
tìm chữ 1 chữ số tận cùng của lũy thừa
a,33^2003x34^2003
b,28^2006x81^2003
a, Ta có: 33^2003= 33^2000.33^3 = ......1 nhân ....7 =.......7
Ta lại có: 34^2003= 34^2000.34^3 = .......6 nhân .........4 =......4
Vậy có tận cùng là ; 4.7= .......8
phần b làm tương tự. Tận cùng=4
Một số có dạng \(\overline{...a}^x\) (với \(a,x\inℕ\)) sẽ có chữ số tận cùng giống với chữ số tận cùng của \(a^x.\)
a. Đặt số mũ của \(33^{2003}\) là \(x.\) Áp dụng cách làm trên ta lập được bảng sau:
| \(x\) | Chữ số tận cùng |
| \(1\) | \(3\) |
| \(2\) | \(9\) |
| \(3\) | \(7\) |
| \(4\) | \(1\) |
| \(5\) | \(3\) |
| \(6\) | \(9\) |
| \(7\) | \(7\) |
| \(8\) | \(1\) |
| \(n\) | \(...\) |
Ta thấy vòng lặp chữ số tận cùng gồm \(4\) số: \(3,9,7,1\) được tạo nên. Mà \(2003\div3\) dư \(2\Rightarrow\) chữ số tận cùng của \(33^{2003}\) là số thứ \(2\) trong dãy là \(9.\)
\(34^{2003}\) làm tương tự giải ra chữ số tận cùng của nó là \(6.\)
Mà \(9\cdot6=54\Rightarrow\) chữ số tận cùng của \(33^{2003}\cdot34^{2003}\) là \(4.\)
Câu b làm tương tự câu a giải ra được chữ số tận cùng của \(28^{2006}\cdot81^{2003}\) là \(4.\)
Sorry nhầm, chữ số tận cùng của câu b là 8
Cho A = 3 + 32 + 33 + ...+ 3120
a) c/m A chia hết cho 4,13 và 82 b)tìm chữ số tận cùng của A c) c/m 2A-3 là lũy thừa của 3a: Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\cdots+\left(3^{119}+3^{120}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+\cdots+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+\cdots+3^{119}\right)\) ⋮4
TA có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\cdots+\left(3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+\cdots+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+\cdots+3^{118}\right)\) ⋮13
Ta có: \(A=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2+\cdots+3^8\right)+\left(3^9+3^{10}+\cdots+3^{16}\right)+\cdots+\left(3^{113}+3^{114}+\cdots+3^{120}\right)\)
\(=3\left(1+3+\cdots+3^7\right)+3^9\left(1+3+\cdots+3^7\right)+\cdots+3^{113}\left(1+3+\cdots+3^7\right)\)
\(=3280\left(3+3^9+\cdots+3^{113}\right)\)
\(=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮82
b: Ta có: \(A=82\cdot40\cdot\left(3+3^9+\cdots+3^{113}\right)\)
\(=10\cdot82\cdot4\cdot\left(3+3^9+\cdots+3^{113}\right)\) ⋮10
=>A có chữ số tận cùng là 0
c:
Sửa đề: 2A+3 là lũy thừa của 3
\(A=3+3^2+3^3+\cdots+3^{120}\)
=>\(3A=3^2+3^3+\cdots+3^{121}\)
=>\(3A-A=3^2+3^3+\cdots+3^{121}-3-3^2-\cdots-3^{120}\)
=>\(2A=3^{121}-3\)
=>\(2A+3=3^{121}\) là lũy thừa của 3
Tìm chữ số tận cùng của các lũy thừa sau:
a)7^2006
b)9^1991
c)2^(4n+1)+2 (n thuộc N)
A) 72006 = ( 72 ) 1003
= ...91003
= ...9 x ...91002
= ...11002
= ...1
VẬY CHỮ SỐ TẬN CÙNG CỦA 72006 LÀ 1
B) 91991 = 9 x 91990
= ...11990
= (...15)398
= ...1398
= ...1
VẬY CHỮ SỐ TẬN CÙNG CỦA 91991 LÀ 1
PHẦN C MÌNH KO BIẾT LÀM
TÍCH HỘ MÌNH NHA
1) Viết về dạng lũy thừa :
64^7 : 4^5 = ...?
2) tính tổng sau :
A = 2+2^2+2^3+2^4 + ... + 2^2018 + 2^2019
3) Tìm chữ số tận cùng của cái số sau :
74^30 ; 49^31 ; 87^32 ; 58^33 ; 23^35.
1,
\(64^7\div4^5\)
\(=\left(4^3\right)^7\div4^5\)
\(=4^{21}\div4^5\)
\(=4^{16}\)
2,
\(A=2+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2020}\right)-\left(2+2^2+2^3+...+2^{2019}\right)\)
\(A=2^{2020}-2\)
3,
\(74^{30}=\left(74^2\right)^{15}=\overline{.....6}^{15}=\overline{.....6}\)
\(39^{31}=39^{30}\cdot39=\left(39^2\right)^{15}\cdot39=\overline{.....1}^{15}\cdot39=\overline{.....1}\cdot39=\overline{......9}\)
\(87^{32}=\left(87^4\right)^8=\overline{.....1}^8=\overline{.....1}\)
\(58^{33}=58^{32}\cdot58=\left(58^4\right)^8\cdot58=\overline{....6}^8\cdot58=\overline{.....6}\cdot58=\overline{....8}\)
\(23^{35}=23^{32}\cdot23^3=\left(23^4\right)^8\cdot\overline{....7}=\overline{....1}^8\cdot\overline{...7}=\overline{....1}\cdot\overline{....7}=\overline{....7}\)