x/3=9/8=26 và 4x +3y-2z =5z
Tìm x,y,z biết: 10x=6y=5z và (2x-3y)/(2z+3)=(3-2z)/4x
Ta có: 10x=6y=5z
=>\(\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\)
=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\)
Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=k\)
=>x=3k; y=5k; z=6k
\(\frac{2x-3y}{2z+3}=\frac{3-2z}{4x}\)
=>\(\frac{2\cdot3k-3\cdot5k}{2\cdot6k+3}=\frac{3-2\cdot6k}{4\cdot3k}\)
=>\(\frac{-9k}{12k+3}=\frac{3-12k}{12k}\)
=>\(\left(12k+3\right)\left(3-12k\right)=-9k\cdot12k=-108k^2\)
=>\(9-144k^2=-108k^2\)
=>\(36k^2=9\)
=>\(k^2=\frac14\)
=>\(\left[\begin{array}{l}k=\frac12\\ k=-\frac12\end{array}\right.\)
TH1: \(k=\frac12\)
=>\(\begin{cases}x=3\cdot\frac12=\frac32\\ y=5\cdot\frac12=\frac52\\ z=6\cdot\frac12=\frac62=3\end{cases}\)
TH2: \(k=-\frac12\)
=>\(\begin{cases}x=3\cdot\frac{-1}{2}=\frac{-3}{2}\\ y=5\cdot\frac{-1}{2}=\frac{-5}{2}\\ z=6\cdot\frac{-1}{2}=\frac{-6}{2}=-3\end{cases}\)
a) x/4 = y/3 =z/9 và x-3y + 4z = 62
b) x/3=y/4, x/5=z/7 và 2x + 3y - z = 186
c) 6x = 4y = 3z và 2x+3y-5z = -21
d) 3x = 2y , 4x = 2z và x + y + z = 27
Ai nhanh nhất mk sẽ tik
Bài 3: Tìm x,y,z biết
a) x : y : z =4: 3 :9 và x - 3y + 4z = 62
c) x : y : z = 1 : 2 : 3 và 4x - 3y + 2z = 36
e) x : y : z = 2 : 3 : 4 và x + 2y - 3z = -20
g) x : y : (- z ) = 3 : 8 : 5 và 4x + 3y + 2z = 52
i) x : y : z = 3 : 5 : (-2) và 5x - y + 3z = 124
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Tìm x,y biết : \(\dfrac{3x-2y}{4}\)=\(\dfrac{2z-4x}{3}\)=\(\dfrac{4y-3z}{2}\)và 2x-3y+5z=-30
TA có: \(\frac{3x-2y}{4}=\frac{2z-4x}{2}=\frac{4y-3z}{2}\)
=>\(\frac{12x-8y}{16}=\frac{6z-12x}{6}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{12x-8y}{16}=\frac{6z-12x}{6}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+6+4}=0\)
=>12x=8y=6z
=>6x=4y=3z
=>\(\frac{6x}{12}=\frac{4y}{12}=\frac{3z}{12}\)
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
mà 2x-3y+5z=-30
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2x-3y+5z}{2\cdot2-3\cdot3+5\cdot4}=\frac{-30}{4-9+20}=\frac{-30}{15}=-2\)
=>\(\begin{cases}x=-2\cdot2=-4\\ y=-2\cdot3=-6\\ z=-2\cdot4=-8\end{cases}\)
Tìm x , y , z biết
a) x/1 = y/2 = z/3 và 4x - 3y + 2z
b) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
tìm tổng 3 số x,y,z thỏa mãn ; x/3=y/2; 7x=5z và 4x-3y-2z=-24
\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\)
Ta có :
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)(1)
\(\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{z}{21}\)(2)
Từ (1) và (2) ; Suy ra : \(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}=\frac{4x}{60}=\frac{3y}{30}=\frac{2z}{42}=\frac{4x-3y-2z}{60-30-42}=\frac{-24}{-12}=2\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{21}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2.15\\y=2.10\\z=2.21\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=42\end{cases}}\)
Vậy x = 30 ; y = 20 và z = 42
Ta có:
\(\frac{x}{3}=\frac{y}{2};\frac{x}{5}=\frac{z}{7}\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{21}\) và \(4x-3y-2z=-24\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{21}=\frac{4x-3y-2z}{4.15-3.10-2.21}=\frac{-24}{-12}=2\)
\(\hept{\begin{cases}\frac{x}{15}=2\Rightarrow x=15.2=30\\\frac{y}{10}=2\Rightarrow y=10.2=20\\\frac{z}{21}=2\Rightarrow z=21.2=42\end{cases}}\)
Vậy \(x=30;y=20;z=42\)
\(\frac{ }{ }\orbr{\begin{cases}\\\end{cases}^2_{ }\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}\sinh}\)o
tìm x,y,z biết x/-3=y/-7=z/12 và -2x-4y+5z=146
bài 2
tim x, y z biet 4x/-5=2y/7=-3z/8 và x+3y-2z=-273
giai nhanh dung minh tick
1. x/2=x/3;y/5=z/7 và x+y+z=92
2. x=y/2=z/3 và 4x-3y-2z=36
3. 2x=3y=5z và x+y-z=95
4. 2/3x=1/5y=5/6z và x-y+z=46
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
2.
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)
=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)
y=\(-\frac{9}{2}x2=-9\)
z=\(-\frac{9}{2}x3=-\frac{27}{2}\)
3. \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}\)
=> x=95/19x15=....
y=95/19x10=...
z=96/19x6=...
cho 5x = 8y = 20z
Tính A = 4x + y - 5z/ x - 3y + 2z