tìm gtln
\(\dfrac{1}{2m}+\dfrac{1}{n}+\dfrac{1}{3}\)
m,n thuộc z
Cho biểu thức A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
và B=\(\dfrac{x^2+x-2}{x^3-1}\)
a Rút gọn biểu thức M=A.B
b Tìm x thuộc Z để M thuộc Z
c Tìm GTLN của biểu thức N=\(A^{-1}-B\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
Xét bt A=\(\dfrac{1}{15}.\dfrac{225}{x+2}+\dfrac{3}{14}.\dfrac{196}{3x+6}\)
a, Rút gọn A
b Tìm n thuộc z để A thuộc z
c Tìm gtnn và gtln
a: \(A=\dfrac{15}{x+2}+\dfrac{42}{3\left(x+2\right)}=\dfrac{45+42}{3\left(x+2\right)}=\dfrac{29}{x+2}\)
b: Để A là số nguyên thì \(x+2\in\left\{1;-1;29;-29\right\}\)
hay \(x\in\left\{-1;-3;27;-31\right\}\)
Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).Tìm GTLN của biểu thức
\(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)
Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)
Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)
\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)
Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)
\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)
Cho \(B=\dfrac{1}{2\left(n-1\right)^2+3}\) . Tìm n thuộc Z để B có GTLN
\(\dfrac{1}{2\left(n-1\right)^2+3}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(n-1\right)^2\ge0\Rightarrow2.\left(n-1\right)^2\ge0\Rightarrow2.\left(n-1\right)^2+3\ge3\)
\(\Rightarrow\dfrac{1}{2\left(n-1\right)^2+3}\ge\dfrac{1}{3}\) với mọi giá trị của \(x\in R\)
Để \(\dfrac{1}{2\left(n-1\right)^2+3}=\dfrac{1}{3}\) thì \(2\left(n-1\right)^2+3=3\)
\(\Rightarrow2\left(n-1\right)^2=0\Rightarrow\left(n-1\right)^2=0\Rightarrow n-1=0\Rightarrow n=1\)
Vậy GTNN của biểu thức là \(\dfrac{1}{3}\) đạt được khi và chỉ khi \(n=1\)
Chúc bạn học tốt!!!
\(\dfrac{1}{2\left(n-1\right)^2+3}\)
Với mọi giá trị của \(n\in R\) ta có:
\(\left(n-1\right)^2\ge0\Rightarrow2\left(n-1\right)^2\ge0\Rightarrow2\left(n-1\right)^2+3\ge3\Rightarrow\dfrac{1}{2\left(n-1\right)^2+3}\le\dfrac{1}{3}\)
Hay \(B\le\dfrac{1}{3}\) với mọi giá trị của \(n\in R\).
Để \(B=\dfrac{1}{3}\) thì \(\dfrac{1}{2\left(n-1\right)^2+3}=\dfrac{1}{3}\)
\(\Rightarrow2\left(n-1\right)^2+3=3\Rightarrow2\left(n-1\right)^2=0\Rightarrow\left(n-1\right)^2=0\Rightarrow n-1=0\Rightarrow n=1\)
Vậy GTLN của biểu thức B là \(\dfrac{1}{3}\) đạt được khi và chỉ khi \(n=1\)
Chúc bạn học tốt!!!
Ta có :
\(2\left(n-1\right)^2\ge0\Rightarrow2\left(n-1\right)^2+3\ge3\)
\(\Rightarrow\dfrac{1}{2\left(n-1\right)^2+3}\le\dfrac{1}{3}\)
hay \(B\le\dfrac{1}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow n-1=0\Rightarrow n=1\)
Vậy \(B\) max = \(\dfrac{1}{3}\) khi n = 1
tìm m và n và thuộc Z để :
\(\dfrac{1}{m}+\dfrac{n}{6}=\dfrac{1}{2}\)
Mọi người giúp em với ạ em đang cần gấp
1, Cho a, b, c > 0 thỏa mãn abc = ab + bc + ca
Chứng minh rằng \(\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\le\dfrac{3}{16}\)
2, Cho x, y, z > 0 thỏa mãn xy + yz + zx = xyz. Tìm GTLN của
\(P=\dfrac{1}{x+2y+3}+\dfrac{1}{y+2z+3}+\dfrac{1}{z+2x+3}\)
cho m,n thuộc Z sao cho
\(\dfrac{m}{n}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{426}+\dfrac{1}{427}\)
cmr m chia hết cho 641
Tìm n ∈ Z để D= \(\dfrac{^{6n-3}}{3n+1}\) có GTLN
Lời giải:
$D=\frac{2(3n+1)-5}{3n+1}=2-\frac{5}{3n+1}$
Để $D$ max thì $\frac{5}{3n+1}$ min
$\Rightarrow 3n+1$ max
$\Rightarrow n$ max
Với $n$ nguyên thì không có giá trị $n$ max. Nên không tồn tại $n$ nguyên để $D$ max.
Cho ba số dương x;y;z thỏa mãn:\(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge2\).Tìm GTLN của P=x+y.