Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguoi Ngu
Xem chi tiết
Nguyễn Thị ngoc bich
Xem chi tiết
super saiyan blue
Xem chi tiết
Chivas
Xem chi tiết
Thắng Nguyễn
11 tháng 5 2016 lúc 21:41

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}:2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)

\(\frac{1}{x+1}=\frac{1}{2017}\)

=>x+1=2017

=>x=2016

Thắng Nguyễn
11 tháng 5 2016 lúc 21:33

\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\frac{1}{x+1}=\frac{1}{4032}\)

=>x+1=4032

=>x=4031

Chivas
11 tháng 5 2016 lúc 21:33

Gap lam roi....

Thành Tò Văn
Xem chi tiết
Bùi Thị Oanh
5 tháng 5 2017 lúc 13:38

bạn viết đề lung tung thế

Đừng Hỏi Tên Tôi
5 tháng 5 2017 lúc 16:37

đúng thế

giáp nguyễn ánh nguyệt
Xem chi tiết
Kaitou Kid
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
20 tháng 5 2016 lúc 5:41

= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)

= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]

=2[1/2-1/(x+1)]= (x-1)/(x+1)

= 2001/2003

==> x=2002

VICTOR_Phát Phan Cả
20 tháng 5 2016 lúc 5:48

x=2002

Thắng Nguyễn
20 tháng 5 2016 lúc 5:51

Mình Giúp Họ Giải Toán Đầu tiên Mà Họ Lại Làm Ngơ sai bét

Nguyễn Thị Quỳnh Trang
Xem chi tiết
soyeon_Tiểu bàng giải
16 tháng 8 2016 lúc 22:40

\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=1\frac{2015}{2017}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{4032}{2017}\)

\(2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{4032}{2017}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{4032}{2017}:2\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4032}{2017}.\frac{1}{2}\)

\(1-\frac{1}{x+1}=\frac{2016}{2017}\)

\(\frac{x}{x+1}=\frac{2016}{2017}\)

=> \(x=2016\)

Nguyễn Thị Quỳnh Trang
18 tháng 8 2016 lúc 13:02

thanks

Vu_anh_tuan
Xem chi tiết
Vũ Quang Vinh
5 tháng 8 2016 lúc 11:47

Theo đầu bài ta có:
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4034}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2016\)

Sát Thủ Trả Thù
5 tháng 8 2016 lúc 11:48

\(\frac{2}{6}\)\(+\frac{2}{12}\)\(+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2017}\div2\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4034}\)

\(\frac{1}{x+1}=\frac{1}{2017}\)

\(=>x+1=2017\)

\(=>x=2016\)

Chúc bạn học tốt Vu_anh_tuan !