Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công chúa Anime
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 10 2021 lúc 11:29

\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)

Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 21:57

3: Ta có: \(\sqrt{4x+1}=x+1\)

\(\Leftrightarrow x^2+2x+1=4x+1\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)

\(\Leftrightarrow3\sqrt{x-1}=15\)

\(\Leftrightarrow x-1=25\)

hay x=26

5: Ta có: \(\sqrt{4x^2-12x+9}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Trang Nguyễn
Xem chi tiết
Rin Huỳnh
31 tháng 8 2021 lúc 15:52

a) ĐKXĐ: x <= 2

pt --> 4 - 2x = 25 <=> x = -21/2 (thỏa)

Nguyễn Hoài Đức CTVVIP
31 tháng 8 2021 lúc 15:52

??

Đề kiểu gì vậy ?

Rin Huỳnh
31 tháng 8 2021 lúc 15:53

b) ĐKXĐ: x >= -1

pt <=> 8sqrt(x + 1)=16 <=> sqrt(x+1)=2 --> x + 1 = 4 <=> x = 3

Nguyễn Thành
Xem chi tiết
ILoveMath
31 tháng 10 2021 lúc 19:59

a, ĐKXĐ: \(x\le2\)

\(\sqrt{4-2x}=5\\ \Leftrightarrow4-2x=25\\ \Leftrightarrow2x=-21\\ \Leftrightarrow x=-10,5\left(tm\right)\)

b, ĐKXĐ: \(x\ge-1\)

\(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\\ \Leftrightarrow5\sqrt{x+1}+\sqrt{9\left(x+1\right)}=16\\ \Leftrightarrow5\sqrt{x+1}+3\sqrt{x+1}=16\\ \Leftrightarrow8\sqrt{x+1}=16\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\)

c, \(\sqrt{4x^2+12x+9}=4\Leftrightarrow4x^2+12x+9=16\\ \Leftrightarrow4x^2+12x-7=0\\ \Leftrightarrow\left(4x^2-2x\right)+\left(14x-7\right)=0\\ \Leftrightarrow2x\left(2x-1\right)+7\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

 

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 20:03

a: \(\Leftrightarrow4-2x=25\)

hay \(x=-\dfrac{21}{2}\)

c: \(\Leftrightarrow\left|2x+3\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4\\2x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Phạm Huyền Trang
Xem chi tiết
Hoàng Anh Thư
19 tháng 6 2019 lúc 18:23

Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Akai Haruma
19 tháng 6 2019 lúc 18:25

1.

ĐKXĐ: \(5\leq x\leq 1\) (vô lý) nên PT sai ngay từ đầu.

2.

ĐKXĐ: \(x\geq -1\)

PT \(\Leftrightarrow \sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}=\sqrt{x+4}\)

\(\Leftrightarrow 3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+4}\)

\(\Leftrightarrow 5\sqrt{x+1}=\sqrt{x+4}\)

\(\Rightarrow 25(x+1)=x+4\) (bình phương 2 vế)

\(\Leftrightarrow x=\frac{-7}{8}\) (thỏa mãn)

Vậy..........

Akai Haruma
19 tháng 6 2019 lúc 18:33

3.

ĐKXĐ: \(x\geq 1\)

Áp dụng BĐT Cauchy:

\(\sqrt{x+2}+\sqrt{x-1}\leq \frac{(x+2)+1}{2}+\frac{(x-1)+1}{2}=x+1,5\)

\(x+1,5\leq x+1,5x< 3x\) với mọi $x\geq 1$

Do đó: \(\sqrt{x+2}+\sqrt{x-1}< 3x\) với mọi $x\geq 1$. Do đó PT đã cho vô nghiệm.

4. ĐKXĐ: $x\geq 1$.

PT \(\Leftrightarrow x^2+6=4\sqrt{(x+1)(x^2-3x+3)}\)

Đặt \(\sqrt{x^2-3x+3}=a; \sqrt{x+1}=b(a,b\geq 0)\)

\(\Rightarrow a^2+3b^2=x^2+6\).

PT đã cho trở thành:

\(a^2+3b^2=4ab\)

\(\Leftrightarrow a^2+3b^2-4ab=0\)

\(\Leftrightarrow (a-3b)(a-b)=0\)\(\Rightarrow \left[\begin{matrix} a=b\\ a=3b\end{matrix}\right.\)

Với $a=b$ \(\Leftrightarrow \sqrt{x^2-3x+3}=\sqrt{x+1}\)

\(\Rightarrow x^2-3x+3=x+1\Leftrightarrow x^2-4x+2=0\)

\(\Rightarrow x=2\pm \sqrt{2}\) (thỏa mãn)

Với \(a=3b\Leftrightarrow \sqrt{x^2-3x+3}=3\sqrt{x+1}\)

\(\Rightarrow x^2-3x+3=9(x+1)\)

\(\Leftrightarrow x^2-12x-6=0\Rightarrow x=6\pm \sqrt{42}\) (thỏa mãn)

Vậy.....

Phạm Kiến Kim Thùy
Xem chi tiết
Akai Haruma
16 tháng 7 2020 lúc 14:01

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

Akai Haruma
16 tháng 7 2020 lúc 14:09

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

Khánh An Ngô
Xem chi tiết
Võ Việt Hoàng
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Võ Việt Hoàng
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Trang Nguyễn
Xem chi tiết
Bống
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:42

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

Akai Haruma
8 tháng 10 2021 lúc 8:13

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

Akai Haruma
8 tháng 10 2021 lúc 8:16

c. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$

$\Leftrightarrow 2\sqrt{x-1}=4$

$\Leftrightarrow \sqrt{x-1}=2$

$\Leftrightarrow x-1=4$

$\Leftrightarrow x=5$ (tm)

d. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$

$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$

$\Leftrightarrow \sqrt{x-2}=6$

$\Leftrightarrow x-2=36$

$\Leftrightarrow x=38$ (tm)