1+y+y\(^2\)+y\(^3\)=t\(^3\)
Tìm y thỏa mãn:
a;1+y+y^2+y^3=t^3
b;1+y+y^2+y^3+y^4=t^4
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
a) Cho x + y = 1. Tính A = x3 + y3 + 3xy
b) Cho x - y = 1. Tính B = x3 - y3 - 3xy
c) Cho x + y = 2 và x2 + y2 = 10. Tính C = x3 + y3
d) Cho x + y = 1. Tính D = x3 + y3 + 3xy. (x2 + y2) + 6x2y2. (x + y)
a) Ta có : \(\left(x+y\right)^3=1^3=1\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)
\(\Leftrightarrow x^3+y^3+3xy=1\) ( do x + y = 1 )
rút gọn rồi tính giá trị của biểu thức với x=1/2 ; y= -3
A= (x+y)^2 + (x-y)^2 + 2.(x+y).(x-y)
B= 3.(x-y)^2 - 2.(x+y)^2 - (x-y).(x+y)
C=(x+y)^3 - (x-y)^3 - (6x^2y +1)
D=(x+y).(x^2 - xy + y^2) - (x+y)^3
\(A=\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+2\left(x^2-y^2\right)\)
\(=2x^2+2x^2=4x^2\)
Vs x = 1/2 ; y = 3 ⇒ \(A=\frac{1}{4}.4=1\)
\(B=3x^2-6xy+y^2-2x^2-4xy-2y^2-x^2+y^2=-10xy=\frac{1}{2}.3.10=15\)
\(C=x^3+3x^2y+3xy^2+y^2-x^3+3x^2y-3xy^2+y^3-6x^2y-1=2y^2-1=18-1=17\)\(D=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2=\frac{1}{4}.9+\frac{1}{2}.27=\frac{9}{4}+\frac{108}{4}=\frac{117}{4}\)Check lại nhé <33 sợ sai lém
Cho x y thỏa mãn x+y+1/x+1/y=8
x^2+y^2+1/x^2+1/y^2=30
Tính P=x^3+y^3+1/x^3+1/y^3
1. Cho x + y + 5 và x2 + y2 = 15. Tính x3- y
2. Cho x+ y= 4. Tính
A= x2 + y2 + 2xy - 4x - 4y - 3
3. Cho x + y = 1. Tính
A= 2.( x3 + y3 ) - 3. ( x2 + y2 )
4. Cho x3 + y2 = 1. Tính A= 2x6 + 3x3 y3+ y6 + y3
Giúp mk mai mk nộp rùi
cho biểu thức F= x^3 y^2 z- x y^2 z^3
a) tính giá trị của F khi x=3; y=-2; z=1
b)tìm y biết x=2;z=-1 thì F=-
c)tìm x,y,z biết x=-y; y=2z tì F=-1/8
a: \(F=x^3y^2z-xy^2z^3\)
Khi x=3; y=-2; z=1 thì \(F=3^3\cdot\left(-2\right)^2\cdot1-3\cdot\left(-2\right)^2\cdot1^3=27\cdot4-3\cdot4=96\)
c: x=-y; y=2z
nên x=-2z
Thay x=-2z; y=2z vào F=-1/8, ta được:
\(\left(-2z\right)^3\cdot\left(2z\right)^2\cdot z-\left(-2z\right)\cdot\left(2z\right)^2\cdot z^3=\dfrac{-1}{8}\)
=>\(-8z^3\cdot4z^2\cdot z+2z\cdot4z^2\cdot z^3=\dfrac{-1}{8}\)
\(\Leftrightarrow-24z^6=\dfrac{-1}{8}\)
\(\Leftrightarrow z^6=\dfrac{1}{192}\)
hay \(z=\pm\dfrac{1}{2\sqrt{3}}\)
1. tính :
[(x+y)^5 - 2(x+y)^4]:[-5(x+y)^3]
2.tìm a để đa thức 24x^3-14x^2+23x+2a+4chia hết cho 4x+1
3. phân tích đa thức thành NT :
a, 12x^3-12x^2+3x
b,x^2.(x-1)+9(1-x)
c, 8(x-y)-x^3(x-y)
4. tìm x
a. x^2+1/4=x
5. cho x-y=5 và x^2+y^2=15, tính x^3-y^3
1.Tính:
[(x+y)5-2(x+y)4 ] : [-5(x+y)3]
= -5(x+y)2 + \(\dfrac{2}{5}\)(x+y)
2.Tìm a để đa thức 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1
24x3 -14x2 +23x+2a+4 \(|^{4x+1}_{6x^2-5x+7}\)
24x3 +6x2
\(\overline{-20x^2}+23x+2a+4\)
-20x2 -5x
\(\overline{28x+2a+4}\)
28x +7
\(\overline{2a+11}\)
Để 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1 thì 2a+11=0 \(\Leftrightarrow\) a= \(\dfrac{11}{2}\)
3. Phân tích đa thức thành NT :
a, 12x3 -12x2 +3x = 3x(4x2 -4x+1) = 3x (2x+1)
b, x2.(x-1)+9(1-x) = x2 (x-1) -9(x-1) = (x-1)(x2-9)
=(x-1)(x-3)(x+3)
c,8(x-y)-x3 (x-y) = (x-y)(8-x3)= (x-y)(2-x)(4+2x+x2)
Bài 4:
=>x^2-x+1/4=0
=>(x-1/2)^2=0
=>x-1/2=0
=>x=1/2
Bài 5:
\(\left(x-y\right)^2=x^2+y^2-2xy\)
=>\(2xy=x^2+y^2-\left(x-y\right)^2=15-5^2=-10\)
=>xy=-5
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=5^3+3\cdot\left(-5\right)\cdot5=125-75=50\)
Rút gọn rồi tính giá trị của biểu thức :
1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=3
2. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-3
3. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005
4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2)
Hiện tại đang cần rất gấp. Bạn nào xong sớm mình sẽ tík cho.
2: \(N=a^2-6ab+9b^2-a^2-6ab-9b^2-ab+2a+b-2\)
\(=-13ab+2a+b-2\)
\(=-13\cdot\dfrac{1}{2}\cdot\left(-3\right)+2\cdot\dfrac{1}{2}+\left(-3\right)-2\)
\(=\dfrac{39}{2}+1-3-2=\dfrac{39}{2}-4=\dfrac{31}{2}\)
3: \(P=4x^2-25-4x^2-4x-1=-4x-26\)
=-8020-26=-8046
4: \(Q=\left(y^2-9\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)\)
\(=y^4-81-y^4+4=-77\)
Tìm x, y thuộc z |x-5|+|1-x|=12/y+1+3 |x|+|y|<3 2 Tìm GTLN của A= 2012/|x|+2013 B=10/|X|+10. Cho 2x + y=3. Tìm GTNN của D=|2x+3|+|y-2|+2