Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Lương Trí
Xem chi tiết
Lê Hải Anh
12 tháng 12 2018 lúc 18:58

sao lại chai hết cho 6 ????????

hả????????????????

hả?????????????????????????

Fire Sky
Xem chi tiết
Toàn Quyền Nguyễn
Xem chi tiết
soyeon_Tiểu bàng giải
14 tháng 11 2016 lúc 22:59

\(ĐK:x;y;z\in Z\)

Xét hiệu: (x3 + y3 + z3) - (x + y + z) 

= (x3 - x) + (y3 - y) + (z3 - z)

= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)

= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)

Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3

Mà (2;3)=1 nên mỗi tích này chia hết cho 6

=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6

Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)

liên hoàng
15 tháng 11 2016 lúc 17:24

bài này  mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ

Long
15 tháng 11 2016 lúc 20:14

Toán lớp 7 mà dùng hằng đẳng thức thì nó hiểu gì hả bà nội

Tran Thi Xuan
Xem chi tiết
alibaba nguyễn
8 tháng 8 2017 lúc 13:15

a/ \(C=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b/ Ta có: 

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)

Vì \(x+y+z⋮6\)

Nên trong 3 số x, y, z có ít nhất 1 số chẵn

\(\Rightarrow3xyz⋮6\)

\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz⋮6\)

Thanh Tùng Nguyễn
Xem chi tiết
Hoàng Thị Dung
9 tháng 8 2017 lúc 9:00

\(x^3+y^3+z^3\)

\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)

Mà x + y + z chia hết cho 6

\(\Rightarrow x^3+y^3+z^3⋮6\)

k mik nha!

Đinh Đức Hùng
9 tháng 8 2017 lúc 9:03

Xét hiệu :

\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)

\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)

\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)

\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)

Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp 

Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)

Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)

Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)

Lương Thu Trang
Xem chi tiết
Seu Vuon
Xem chi tiết
Akai Haruma
8 tháng 7 lúc 23:40

Lời giải:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
 lẻ 1 số chẵn, 3 số chẵn

Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$

Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn

$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.

$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$

Vậy $(x+y)(y+z)(x+z)\vdots 2$

$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$

Mà $x+y+z\vdots 6$

$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$

Vũ Trang
Xem chi tiết
Nguyễn Thị Huyền Thương
Xem chi tiết