Chứng minh :
x +y+z chia hết cho 6<=> x^3+ y^3+ z^3 chia hết cho 6
Cho x,y,z thuộc Z và x+y+z chia hết cho 6 . Chứng minh : x3+y3+z3 chia hết cho 6
sao lại chai hết cho 6 ????????
hả????????????????
hả?????????????????????????
Cho 3 số nguyên x, y, z có tổng chia hết cho 6.
Chứng minh: M = (x + y)(y + z)(x + z) - 2000xyz chia hết cho 6
Chứng minh rằng : \(x^3+y^3+z^3\)
chia hết cho 6 khi và chỉ khi x+y+z chia hết cho 6
\(ĐK:x;y;z\in Z\)
Xét hiệu: (x3 + y3 + z3) - (x + y + z)
= (x3 - x) + (y3 - y) + (z3 - z)
= x.(x2 - 1) + y.(y2 - 1) + z.(z2 - 1)
= x.(x - 1).(x + 1) + y.(y - 1).(y + 1) + z.(z - 1).(z + 1)
Dễ thấy x.(x - 1).(x + 1); y.(y - 1).(y + 1); z.(z - 1).(z + 1) đều là tích 3 số nguyên liên tiếp nên 3 tích này đều chia hết cho 2 và 3
Mà (2;3)=1 nên mỗi tích này chia hết cho 6
=> (x3 + y3 + z3) - (x + y + z) chia hết cho 6
Như vậy nếu x3 + y3 + z3 chia hết cho 6 thì x + y + z chia hết cho 6 và ngược lại (đpcm)
bài này mà lớp 7 thì khó đây , nhưng lớp 8,9 lại ưa dễ
Toán lớp 7 mà dùng hằng đẳng thức thì nó hiểu gì hả bà nội
Cho C= (x+y+z)(xy+yz+zx)-xyz
a) Phân tích C thành nhân tử
b) Cho x, y, z là 3 số nguyên có tổng chia hết cho 6 Chứng minh (x+y)(y+z)(z+x)-2xyz chia hết cho 6
a/ \(C=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
b/ Ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)-2xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz\)
Vì \(x+y+z⋮6\)
Nên trong 3 số x, y, z có ít nhất 1 số chẵn
\(\Rightarrow3xyz⋮6\)
\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)-3xyz⋮6\)
Chứng minh:
Nếu x + y + z chia hết cho 6 thì x3 + y3 + z3 chia hết cho 6 [x;y;z là số tự nhiên khác 0]
ai biết thì trả lời nhanh giúp mình nha
\(x^3+y^3+z^3\)
\(=\left(x+y+z\right).\left(x+y+z\right).\left(x+y+z\right)\)
Mà x + y + z chia hết cho 6
\(\Rightarrow x^3+y^3+z^3⋮6\)
k mik nha!
Xét hiệu :
\(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)\)
\(=\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)\)
\(=x\left(x^2-1\right)+y\left(y^2-1\right)+z\left(z^2-1\right)\)
\(=\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)\)
Vì các tích \(\left(x-1\right)x\left(x+1\right);\left(y-1\right)y\left(y+1\right);\left(z-1\right)z\left(z+1\right)\) là tích của 3 số TN liên tiếp
Nên \(\hept{\begin{cases}\left(x-1\right)x\left(x+1\right)⋮6\\\left(y-1\right)y\left(y+1\right)⋮6\\\left(z-1\right)z\left(z+1\right)⋮6\end{cases}}\)\(\Rightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)⋮6\)
Hay \(\left(x^3+y^3+z^3\right)-\left(x+y+z\right)⋮6\)
Mà \(\left(x+y+z\right)⋮6\)(gt) \(\Rightarrow x^3+y^3+z^3⋮6\)(đpcm)
Cho A = ( x+y )(y+z)(z+x) + xyz
Chứng minh rằng nếu x,y,z là các số nguyên và x+y+z chia hết cho 6 thì A - 3xyz chia hết cho 6
Cho các số nguyên x, y, z thỏa x + y + z chia hết cho 6. CMR x3 + y3 + z3 chia hết cho 6
Lời giải:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
lẻ 1 số chẵn, 3 số chẵn
Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$
Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn
$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.
$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$
Vậy $(x+y)(y+z)(x+z)\vdots 2$
$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$
Mà $x+y+z\vdots 6$
$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$
Bài 1:tìm n thuộc Z để
a. n-4 chia hết cho n-1
b. n+5 chia hết cho n-2
c.2n+1 chia hết cho n-5
d. 3n-a chia hết cho n-2
Bài 2 tìm x, y thuộc Z
a,( x+3)x ( y+2) = 1
b. ( 2x -5)x (y-6)=17
c. ( x-1)x(x+y)=33
Bài 3:cho biết a-b chia hết cho 6
chứng minh
a. a+5bchia hết cho b
b. a+17b chia hết cho 6
c. a-13b chia hết cho 6
Bài 4. chứng minh với a thuộc Z
a. M= a(a+2)-a(a-5)-7 la bội của 7
b. N= (a-2) (a+3)-(a-3)(a+2)là 2 số chẵn
Cho x,y,z là các số nguyên thoả mãn x+y+z chia hết 6
Chứng minh: (x+y)(y+z)(x+z)-2xyz chia hêt 6