tìm GTLN
y=\(\sqrt{\dfrac{x}{6}-1-\dfrac{x^2}{4}}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
A=\(\dfrac{\sqrt{x}+1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\) B=\(\dfrac{\sqrt{x}+3}{x+8}\) Tìm GTLN: P=AB
ĐKXĐ: x>=0; x<>1/4
Ta có: \(A=\frac{\sqrt{x}+1}{2\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+6\sqrt{x}+2}{2x+5\sqrt{x}-3}\)
\(=\frac{\sqrt{x}+1}{2\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+6\sqrt{x}+2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+\sqrt{x}\left(2\sqrt{x}-1\right)-x-6\sqrt{x}-2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+4\sqrt{x}+3+2x-\sqrt{x}-x-6\sqrt{x}-2}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{2x-3\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
Ta có: P=A*B
\(=\frac{\sqrt{x}-1}{\sqrt{x}+3}\cdot\frac{\sqrt{x}+3}{x+8}=\frac{\sqrt{x}-1}{x+8}\)
=>\(\frac{1}{P}=\frac{x+8}{\sqrt{x}-1}=\frac{x-1+9}{\sqrt{x}-1}=\sqrt{x}+1+\frac{9}{\sqrt{x}-1}=\sqrt{x}-1+\frac{9}{\sqrt{x}-1}+2\ge2\cdot\sqrt{\left(\sqrt{x}-1\right)\cdot\frac{9}{\sqrt{x}-1}}+2=2\cdot3+2=8\forall x\) thỏa mãn ĐKXĐ
=>\(P\le\frac18\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\left(\sqrt{x}-1\right)^2=9;\sqrt{x}-1>0\)
=>\(\sqrt{x}-1=3\)
=>\(\sqrt{x}=4\)
=>x=16(nhận)
tìm gtln gtnn của hàm số
\(y=\sqrt{1+x}+\sqrt{1-x}+\dfrac{x^2}{4}\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$
M=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\) ;N=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
c) Tìm x để P=\(\dfrac{M}{N}+1\) đạt GTLN
\(\dfrac{M}{N}=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) (ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))
\(=\left[\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)\(=\left[\dfrac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\left[\dfrac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)
\(=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{2}{\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{M}{N}+1=\dfrac{2}{\sqrt{x}+2}+1\)
Ta thấy: \(\sqrt{x}\ge0\forall x\)
\(\Rightarrow\sqrt{x}+2\ge2\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\forall x\)
\(\Rightarrow\dfrac{2}{\sqrt{x}+2}+1\le2\forall x\)
\(\Rightarrow Max_P=2\Leftrightarrow\dfrac{2}{\sqrt{x}+2}+1=2\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=1\)
\(\Leftrightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\left(tm\right)\)
#Urushi☕
Bạn tự rút gọn nha .
c) Ta có : \(P\text{=}\dfrac{M}{N}+1\text{=}\dfrac{2}{\sqrt{x}+2}+1\)
Để P có giá trị lớn nhất.
\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}cóGTLN\)
\(\Leftrightarrow\sqrt{x}+2cóGTNN\)
Mà : \(\sqrt{x}+2\ge2\)
\(\Rightarrow\) Để : \(\left(\sqrt{x}+2\right)_{min}\) \(\Leftrightarrow\sqrt{x}\text{=}0\Leftrightarrow x\text{=}0\)
Vậy............
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(\dfrac{x-2}{x-\sqrt{x}-2}-1\right)\)
a) Rút gọn A.
b) Tìm x để P=2A - \(\dfrac{1}{x}\)đạt GTLN.
\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x, y, z là các số thực dương và thỏa mãn: x+y+z=xyz. Tìm GTLN của biểu thức: \(P=\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}+\dfrac{1}{\sqrt{1+z^2}}\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)
\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)
\(P_{max}=1\) khi \(x=y=z=1\)