tinh gí tri bieu thuc:
D=\(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
tinh gia tri bieu thuc ;
B=\(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
\(B=-\dfrac{2^{12}\cdot3^{10}+2^9\cdot2^3\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=-\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=-\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=-\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot7}=\dfrac{-4}{7}\)
gia tri cua bieu thuc 7(4^6-9^5+6^9.120)/-8^4.3^12-6^11
tinh gia tri cua cac bieu thuc sau
\(\frac{20^{5.}5^{10}}{100^5}\)
b)\(\frac{6^3+3.6^2+3^3}{-13}\)
c)\(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)l
a) 3125
b) -27
c) \(\frac{46}{5}\) hay 9,2
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\dfrac{-4^6.9^5-6^9.120}{-8^4.3^{12}-6^{11}}\)
\(=\dfrac{-2^{12}\cdot3^{10}-2^{12}\cdot3^{10}\cdot5}{-2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2\cdot6}{3\cdot7}=\dfrac{12}{21}=\dfrac{4}{7}\)
1) Tinh gia tri cua bieu thuc:
A=\(\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
B=\(\frac{4^6.9^5+6^9.120}{-8^4.3^{12}+6^{11}}\)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
Câu 2: Tính
C = \(\dfrac{6^3+3.6^2+3^3}{13}\)
D = \(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(C=\dfrac{6^3+3\cdot6^2+3^3}{13}=\dfrac{3^3\cdot8+3^3\cdot4+3^3}{13}=27\)
Rút gọn biểu thức: \(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(=\dfrac{2^{12}.3^{10}.6}{2^{11}.3^{11}.5}=\dfrac{2.6}{3.5}=\dfrac{4}{5}\)
\(A=\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\dfrac{\left(2^2\right)^6.\left(3^2\right)^5+6^9.6.2^2.5}{\left(2^3\right)^4.3^{12}-6^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\dfrac{2^{11}.3^{10}\left(2^1+2^1.5\right)}{2^{11}.3^{10}\left(2^1.3^2-1.3^1\right)}=\dfrac{2+10}{2.9-1.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\dfrac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^9\cdot2^3\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot5}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot5}=\dfrac{2\cdot6}{3\cdot5}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}\)
ta có : \(\dfrac{4^6.9^5+6^9.120}{-8^4.3^{12}-6^{11}}=\dfrac{4\left(4^5.9^5+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}=\dfrac{4\left(2^{10}.3^{10}+5.6^{10}\right)}{-2^{12}.3^{12}-6^{11}}\)
\(=\dfrac{4\left(6^{10}+5.6^{10}\right)}{-6^{12}-6^{11}}=\dfrac{4.6^{11}}{-6^{11}\left(6+1\right)}=-\dfrac{4}{7}\)