Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Akai Haruma
4 tháng 2 2021 lúc 3:09

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)

\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)

Vậy $T_{\min}=\frac{3}{2}$.

Giá trị này đạt tại $a=b=c=1$

Ngô Bảo Châu
Xem chi tiết
Lê Song Phương
8 tháng 8 2023 lúc 19:54

Ta có:

\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)

\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)

Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 15:36

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 15:38

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2021 lúc 23:09

\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)

Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)

\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)

Ta có đánh giá:

\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)

Thật vậy, BĐT tương đương:

\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự và cộng lại:

\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)

Phạm Tuấn Kiệt
Xem chi tiết
vũ tiền châu
22 tháng 2 2018 lúc 18:37

Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)

                                      \(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)

                                        \(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)

Cộng 3 cái vào, ta có 

A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)

Vậy A min = 24 

Neetkun ^^

trần thành đạt
22 tháng 2 2018 lúc 15:42

bạn tìm ra dấu= xảy ra khi nào

nguyên tuấn siêu minh
22 tháng 2 2018 lúc 18:48

rất tiếc sai rồi :)) 

oooloo
Xem chi tiết
Big City Boy
Xem chi tiết
Cấn Minh Khôi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2023 lúc 16:33

\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)

\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)

\(=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)

oooloo
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 20:43

Đây là bài IMO 2001 và không cần điều kiện \(a+b+c=1\)

Áp dụng Holder:

\(P.P.\left[a\left(a^2+8bc\right)+b\left(b^2+8ac\right)+c\left(c^2+8ab\right)\right]\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow P^2\ge\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}=\dfrac{a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a^3+b^3+c^3+24abc}\)

\(\Rightarrow P^2\ge\dfrac{a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{a^3+b^3+c^3+24abc}=1\)

\(\Rightarrow P\ge1\)