Giúp mình bài 3.4 và 3.5 với
a)S = 1.2 + 2.3 + 3.4 + 4.5 +........+99.100
b)S= 1.3 + 3.5 + 5.7 +.............+99.101
c)S= 1.4 + 4.7 + 7.10 +...........+37.40 + 40.43
Giúp mình với mình cần gấp,mai trả bài rồi
A=1.2+2.3+3.4+...+2016.2017
B=1.3+2.4+3.5+...+2016.2018
Tìm A-B
Giúp mình nha mình tick cho
A)
dãy trên có số số hạng là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 18339,1 chữ số
A là:
( 2016,2017 + 1,2 ) x 18339,1 : 2 = 18560918,35
B)
dãy trên có số số hạng là:
( 2016,2018 - 1,3 ) : 1,1 + 1 = 1832,73 chữ số
B là:
( 2016,2018 + 1,3 ) x 1832,73 : 2 = 1848768,04
c, C = 2020/1.2 + 2020/2.3 + 2020/3.4 + ... + 2020/2019.2020
d, D = 2020/1.3 + 2020/3.5 + 2020/5.7 + ... + 2020/2019.2021
e, E = 2023/ 1.3 + 2023/3.5 + 2023/5.7 + ... + 2023/2019.2020
f, F = 1/15 + 1/35 + 1/63 + ... + 1/657
giúp với mình cần gấp lắm
Giúp mình bài này với
6x-302=2^3.5
\(6x-302=2^3.5\)
\(6x-302=8.5\)
\(6x-302=40\)
\(6x=40+302\)
\(6x=342\)
\(\Rightarrow x=57\)
\(6x-302=2^3.5\)
\(\Rightarrow6x-302=8.5\)
\(\Rightarrow6x-302=40\)
\(\Rightarrow6x=40+302=342\)
\(\Rightarrow x=342:6=57\)
Vậy x = 57
6x-302=2^3.5
6x-302=8.5
6x-302=40
6x =302+40
6x =342
x =342:6
x =57
Vậy x=57
giúp mình bài này với: A=3/1.2+3/2.3+3/3.4+3/4.5+...+3/2021.2022
A=3/1.2+3/2.3+3/3.4+3/4.5+...+3/2021.2022
A=3(1/1.2+1/2.3+1/3.4+1/4.5+...+1/2021.2022)
A=3(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/2021-1/2022)
A=3[1/1+(1/2-1/2)+(1/3-1/3)+(1/4-1/4)+...+(1/2021-1/2021)-1/2022]
A=3[1/1+0+0+0+...+0-1/2022
A=3(1/1-1/2022)
A=3(2022/2022-1/2022)
A=3.2021/2022
A=2021/674
Bn Tham Khảo:
https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-3-1-2-3-2-3-3-3-4-3-4-5-3-2015-2016-faq188428.html
Các bạn giúp mình với!
Đề bài: (3.4^2.2^7)^2 : (3^2 . 2^20) = ?
Bài 1
A=1.2+2.3+3.4+....+151.152
B=1.3+3.5+5.7+...+2023.2025
C=2.4+4.6+...+2024.2026
D=1.2+3.4+...+200.202
M=12+22+...+20242
N=13+23+...+1003
Q=13+23+...+20243
R=12+22+...+2003
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
1/1.3+1/3.5+1/5.7+......+1/99.101
Các bạn giải giúp mình bài này với
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)
\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}\)
\(=\frac{50}{101}\)
Tính tổng các phân số sau:
\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2003.2004}\)
\(b,\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{2003.2005}\)
Giúp mình với!!!!!
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(2A=1-\frac{1}{2005}\)
\(2A=\frac{2004}{2005}\)
\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)
a)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=\frac{1}{1}-\frac{1}{2004}\)
\(\Rightarrow=\frac{2003}{2004}\)
b)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(=\frac{1}{1}-\frac{1}{2005}\)
\(\Rightarrow=\frac{2004}{2005}\)
\(a,\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt \(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)
\(\Rightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)
\(\Rightarrow2B=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(\Rightarrow2B=1-\frac{1}{2005}\)
\(\Rightarrow2B=\frac{2005}{2005}-\frac{1}{2005}\)
\(\Rightarrow2B=\frac{2004}{2005}\)
\(\Rightarrow B=\frac{2004}{2005}:2=\frac{2004}{2005}.\frac{1}{2}\)
\(\Rightarrow B=\frac{1002}{2005}\)
Vậy...
hok tốt!!