B= (a + b +c)^ 3 - (b +c - a)^ 3 -(a+ c- b) ^3 - (a+b+c)^ 3
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
Phân tích thành nhân tử
1, a(b-c)3+b(c- a)3+c(a- b)
2, a^4(b-c)+b^4(c-a)+c^4(a-b)
3, bc(a+d)(b-c)-ac(b+d)(a-c)+ab(c+d)(a-b)
4, (a+b+c)^3-(a+b-c)^3-(b+c-a)^3-(c+a-b)^3
5, (b-c)^3+(c-a)^3+(a-b)^3
cmr
c) (a+b+c)3 -a 3 -b 3 -c 3=3(a+b)(b+c)(c+a)
d) a3+b3+c3 -3abc=(a+b+c)(a2+b2 +c2 -ab-bc-ca)
e) (a+b+c)3 -(b+c-a)3 -(a+c-b) 3 -(a+b-c)3=24abc
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)\cdot c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
1,rút gọn các biểu thức:
a,(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3
b,(a+b)^3+(b+c)^3+(c+a)^3-(a+b)(a+c)(b+c)
a,Đặt a+b-c=x, c+a-b=y, b+c-a=z
=>x+y+z=a+b-c+c+a-b+b+c-a=a+b+c
Ta có hằng đẳng thức:
(x+y+z)^3-3x-3y-3z=3(x+y)(x+z)(y+z)
=>(a+b+c)^3-(b+c-a)^3-(a+c-b)^3-(a+b-c)^3=(x+y+z)^3-x^3-y^3-z^3
=3(x+y)(x+z)(y+z)
=3(a+b-c+c+a-b)(c+a-b+b+c-a)(b+c-a+a+b-c)
=3.2a.2b.2c
=24abc
CMR
a, (a+b)(b+c)(c+a)+4abc=c(a+b)^2+a(b+c)^2+b(c+a)^2
b, (a^3+b^3+c^3)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
thank!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
chứng minh hàng đẳng thức:
a) (a+b+c)^3 - a^3 - b^3 - c^3 = 3(a+b) (b+c) (c+a)
b) (a+b+c) ^3 - a^3 - b^3 -c^3 = 3(a+b)(b+c)(c+a)
Giúp mình với, mình cần rất gấp
Rút gọn biểu thức:
a) a+b+c)^3 - (b+c-a) ^3 - (a+c-b)^3 - (a+b-c)^3
b)(a+b)^3 + (b+c)^3 + (c+a) -3(a+b)(b+c)(c+a)
Giúp mình với nhé
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
(1) (a+b+c)2=a2+b2+c2+2ab+2bc+2ac(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
(2) (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
(3) (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
(4) a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
(5) a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
(6) (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
(7) a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
(8) (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
(9) (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
(10) (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
(11) ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
(12)ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
Chứng minh giùm mik hằng đẳng thức kia vs
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)