Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chau Pham
Xem chi tiết
Ly Ly
Xem chi tiết
Nguyễn Huy Tú
14 tháng 7 2021 lúc 7:24

undefined

Dưa Hấu
14 tháng 7 2021 lúc 7:27

undefined

Quynh Existn
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 14:15

\(BC=BH+CH=52\left(cm\right)\)

\(AH=\sqrt{BH.CH}=2\sqrt{105}\) (cm)

\(AB^2=BH.BC\Rightarrow AB=\sqrt{BH.BC}=2\sqrt{130}\left(cm\right)\)

\(AC^2=CH.BC\Rightarrow AC=\sqrt{CH.BC}=2\sqrt{546}\left(cm\right)\)

Nguyễn Huy Tú
12 tháng 7 2021 lúc 14:17

undefined

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:24

Ta có: BC=BH+CH(H nằm giữa B và C)

nên BC=10+42=52(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=10\cdot42=420\)

hay \(AH=2\sqrt{105}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=\left(2\sqrt{105}\right)^2+10^2=420+100=520\)

hay \(AB=2\sqrt{130}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=52^2-520=2184\)

hay \(AC=2\sqrt{546}\left(cm\right)\)

Ly Ly
Xem chi tiết
Caodangkhoa
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 15:52

a) Các hệ thức giữa cạnh và đường cao AH:

\(AH^2=BH.CH\)

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(AH.BC=AB.AC\)

b) Áp dụng HTL trong tam giác ABC vuông tại A có đg cao AH:

\(AH.BC=AB.AC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

Ta có: \(AB^2=BH.BC\)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

\(BC=CH+BH\)

\(\Rightarrow CH=BC-BH=10-3,6=6,4\left(cm\right)\)

2moro
Xem chi tiết
nongvietthinh
Xem chi tiết
lê thị ngọc huyền
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
lê thị ngọc huyền
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

ngu như bò
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Chau Pham
Xem chi tiết
tamanh nguyen
23 tháng 8 2021 lúc 14:20

undefined

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 14:29

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=164\)

hay \(BC=2\sqrt{41}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{32\sqrt{41}}{41}cm\\CH=\dfrac{50\sqrt{41}}{41}cm\\AH=\dfrac{40\sqrt{41}}{41}cm\end{matrix}\right.\)

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 20:53

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(AB=\dfrac{3}{7}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)

\(\Leftrightarrow AC^2=11368\)

\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)

hay BC=116(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)