cho tam giác abc biết ab bằng 3 cm ac bằng 4 cm bc bằng 6 cm tính cos b biết b là góc nhọn
Cho tam giác ABC AB nhỏ hơn AC đường phân giác của góc a cắt BC tại d gọi m n lần lượt là hình chiếu của b và c trên ab câu b biết AB = 4 cm AC bằng 6 cm BC = 4 cm tính độ dài các đoạn thẳng BD CD
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
cho tam giác ABC vuông tại A . Biết AB bằng 6 cm , BC = 10 cm a, tính AC và chu vi tam giác ABC b, kẻ BD là phân giác góc B . [ D thuộc AC ] . Từ D kẻ DM vuông góc với BC . CM tam giác ABD = tam giác MBD . c, So sánh AM và MC .
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
Cho tam giác ABC biết góc b bằng 50 độ góc c bằng 30 độ đường cao AH = 3 cm trong bảng lượng giác để tính AB AC BC
cho tam góc vuông ABC vuông góc tại A có AB bằng 30 cm AC bằng 40 cm BC = 50 cm .từ A đường cao AH vuông góc BC biết HD bằng 38 cm
a,tính diện tích tam giác ABC ABH AHC
b, từ B từ hạ đường vuông góc HD ,HE Xuống AB AC tính diện tích hình chữ nhật ADHE
Cho hình vẽ bên trong đó ABCD là hình tam giác vuông ở a cạnh AB bằng 30 cm cạnh AC bằng 40 cm cạnh BC bằng 50 cm biết BDEC là hình thang có chiều cao bằng 6 cm :
a) tính độ dài 3 đường cao của tam giác ABC
b) tính diện tích ADE
a, Chiều cao thứ nhất của tam giác ABC là AC= 40 cm
Chiều cao thứ hai của tam giác ABC là AB= 30 cm
Gọi chiều cao thứ ba của tam giác ABC là AI
Diện tích tam giác ABC là:
(40x30):2=600 ( cm 2)
Chiều cao AI là:
600x2:50=24 ( cm)
b,Nối B Với E
Diện tích tam giác BEC là
50 x 6 : 2=150 ( cm 2)
Diện tích tam giác BEA là
600-150=450 ( cm 2)
Độ dài đoạn thẳng DE là
450x2:30=30 ( cm)
Gọi AK là chiều cao của tam giác ADE
=>Độ dài chiều cao AK là:
24-4=20 ( cm)
Diện tích tam giác ADE là:
(20x30):2=300 ( cm 2)
Câu 1. Trong một tam giác vuông, kết luận nào sau đây là đúng ?
A. Tổng hai góc nhọn bằng 180 0 B. Hai góc nhọn bằng nhau
C. Hai góc nhọn phô nhau D. Hai góc nhọn kề nhau .
Câu 2: Chọn câu trả lời đúng. Cho tam giác ABC có 00
A50;B60 thì C?
A. 70 0 B. 110 0 C. 90 0 D. 50 0
Câu 3. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 1cm ; 2cm ; 3cm B. 2cm ; 3cm ; 4cm
C. 3cm ; 4cm ; 5cm D. 4cm ; 5cm ; 6cm
Câu 4: Chọn câu sai.
A. Tam giác có hai cạnh bằng nhau là tam giác cân.
B. Tam giác có ba cạnh bằng nhau là tam giác đều.
C. Tam giác cân là tam giác đều.
D. Tam giác đều là tam giác cân.
Câu 5: Tam giác ABC vuông tại B suy ra:
A. AB 2 = BC 2 + AC 2 B. BC 2 = AB 2 + AC 2
C. AC 2 = AB 2 + BC 2 D. Cả a,b,c đều đúng
Câu 6: Hãy điền dấu X vào ô trống mà em đã chọn :
Câu Nội dung Đúng Sai
1 Tam giác vuông có một góc bằng 045 là tam giác vuông cân
2 Tam giác cân có một góc bằng 060 là tam giác đều
3 Nếu ABC là một tam giác đều thì ABC là tam giác cân
4 Nếu hai cạnh và một góc của tam giác này bằng hai cạnh và
một góc của tam giác kia thì hai tam giác đó bằng nhau
Câu 7: a). Cho ABC vuông tại A có AB = 8 cm; AC = 6 cm thì BC bằng :
A. 25 cm B. 14 cm C. 100 cm D. 10 cm
b). Cho ABC cân tại A, biết 050B thì A bằng :
A. 080 B. 050 C. 0100 D. Đáp án khác
Câu 8 . Tam giác ABC có:
A. 0ABC90 B. 0ABC180 C. 0ABC45 D. 0ABC0
Câu 9: ABC = DEF Trường hợp cạnh – góc – cạnh nếu
A. AB = DE; BF ; BC = EF B. AB = EF; BF ; BC = DF
C. AB = DE; BE ; BC = EF D. AB = DF; BE ; BC = EF
Câu 10. Góc ngoài của tam giác bằng :
A. Tổng hai góc trong không kề với nó. B. Tổng hai góc trong
C. Góc kề với nó D. Tổng ba góc trong của tam giác.
Câu 1: C
Câu 2:A
Câu 3:C
Câu 4 C
Câu 5: B
Câu 6 1Đ, 2Đ, 3Đ, 4S
Câu 7: a, Đ
Câu 10 A.
Các câu khác k rõ đề
cho tam giác ABC vuông tại A . Có AB bằng 6 cm. AC bằng 8 cm. a tính độ dài cạnh BC và chu vi tam giác ABC . Đường phân giác của góc B cắt AC tại D .Vẽ DH vuông góc BC . [ H thuộc BC ]. CM tam giác ABD = tam giác HBD c CM DA < DC . có vẽ hình nha mọi người
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Cho tam giác ABC cân tại A biết ab bằng ac bằng 5 cm BC = 6 cm Hỏi đường cao AD và Be của tam giác ABC cắt nhau tại H D thuộc BC E thuộc AC
a Tính độ dài đoạn thẳng ad
B tính số đo góc C và góc ABC
C Gọi O là tâm đường tròn ngoại tiếp tam giác AC Chứng tỏ de là tiếp tuyến của đường tròn tâm O
1.Cho tam giác ABC nhọn, vẽ đường cao AH. Tính chu vu của tam giác ABC, biết AC = 13cm, AH = 12 cm, BH = 9cm
2. Cho tam giác ABC, góc A = 90 độ. BIết AB + AC = 49 cm; AB - AC = 7cm. Tínnh BC
3. Cho tam giác ABC, AB = AC =17 cm. Kẻ BD vuông góc với AC. Tính BC biết BD = 15cm