1. Cho tam giác ABC. Gọi I là trung điểm của BC; D và E là 2 điểm sao cho vectoBD= vectoDE= vectoEC
a)Chứng minh: vectoAB+ vectoAC= vectoAD+ vectoAE
b)Tính vectoAS= vectoAB+ vectoAD+ vectoAC+ vectoAE theo vectoAI
c)Suy ra 3 điểm A, I, S thẳng hàng
Bài 1: Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB, AC.
a)Chứng minh MN // BC
b)Gọi D là điểm bất kỳ thuộc cạnh BC ( D khác B,C), AD cắt MN tại I. Chứng
minh I là trung điểm của AD.
Bài 2: Cho tam giác ABC cân tại A, M là trung điểm của BC. Kẻ Mx// AC cắt AB tại E, kẻ My// AB cắt AC tại F. Chứng minh rằng:
1)E,F là trung điểm của AB, AC
2) FE = 1/2 BC
3) ME=MF, AE=FA
Bài 1 : a) M là trung điểm AB
N là trung điểm AC
suy ra : MN là Đường trung bình của tam giác ABC
suy ra : MN // BC ; MN = BC/2
b) Ta có : MN // BC và M là trung điểm AB
Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD
em chỉ giải được bài 1 thôi nên thông cảm ạ
Cho tam giác nhọn ABC , trực tâm H . Gọi D là điểm đối xứng vớ H qua trung điểm M của BC . Gọi I là trung điểm của AD . Chứng minh rằng I là giao điểm cua các đươngf trung trục của tam giác ABC
+ Ta có
M là trung điểm BC (đề bài)
HM=DM (đề bài) => M là trung điểm HD
=> BHCD là hình bình hành (Tứ giá có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hbh)
=> BH//CD mà BH vuông góc AC => CD vuông góc AC
+ Từ I dựng đt vuông góc với AC cắt AC tại K
Xét tg ADC có
CD vuông góc AC (cmt)
IK vuông góc AC
=> IK//CD (cùng vuông góc với AC)
Ta cũng có I là trung điểm của AD
=> K là trung điểm của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với 1 cạnh của tg thì đi qua trung điểm của cạnh còn lại) => IK là trung trực thuộc cạnh AC của tg ABC (1)
+ Xét tg AHD có
I là trung điểm của AD (đề bài)
M là trung điểm của HD (cmt)
=> IM là đường trung bình của tg AHD => IM//AH mà AH vuông góc với BC => IM vuông góc với BC => IM là đường trung trực thuộc cạnh BC của tg ABC (2)
Từ (1) và (2) => I là giao của 3 đường trung trực của tg ABC
Ta có: I là trung điểm của AD; M là trung điểm HD
=> IM là đường trung bình của tam giác AHD
=> IM //AH mà AH vuông BC ; M là trung điểm BC
=> IM là đường trung trực của BC (1)
Ta có: M là trung điểm BC; M là trung điểm HD
=> HCDB là hình bình hành
=> DC // BH mà BH vuông AC => DC vuông AC
=> Tam giác ACD vuông tại C
=> IC = 1/2 AD=> IC = AI => I thuộc đường trung trực của AC (2)
(1); (2) => I là trung trực của tam giác ABC
: Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tam giác ABM=tam giác DCM
b) Chứng minh CD//AB
c) Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm K sao cho IB = IK. Chứng minh D, C, K thẳng hàng.
a. Xét △ABM và △DCM:
\(AM=MD\left(gt\right)\)
\(\hat{AMB}=\hat{DMC}\) (đối đỉnh)
\(BM=MC\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b. Từ a. => \(\hat{MCD}=\hat{MBA}\) (2 góc tương ứng). Mà hai góc này ở vị trí so le trong
\(\Rightarrow CD\text{ // }AB\left(a\right)\)
c. Xét △CIK và △AIB:
\(AI=IC\left(gt\right)\)
\(\hat{AIB}=\hat{CIK}\) (đối đỉnh)
\(BI=IK\left(gt\right)\)
\(\Rightarrow\Delta CIK=\Delta AIB\left(c.g.c\right)\Rightarrow\hat{ICK}=\hat{IAB}\). Mà hai góc ở vị trí so le trong
\(\Rightarrow AB\text{ // }CK\left(b\right)\)
Từ (a) và (b), theo tiên đề Ơ-clit \(\Rightarrow AB\text{ // }DK\)
Vậy: D, C, K thẳng hàng (đpcm).
a) Xét tam giác ABM và tam giác DCM:
BM = CM (M là trung điểm BC).
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).
MA = MD (cmt).
\(\Rightarrow\) Tam giác ABM = Tam giác DCM (c - g - c).
b) Ta có: \(\widehat{BAM}=\widehat{CDM}\) (Tam giác ABM = Tam giác DCM).
Mà 2 góc này ở vị trí so le trong.
\(\Rightarrow\) CD // AB (dhnb).
c) Xét tứ giác AKCB có:
I là trung điểm AC (gt).
I là trung điểm BK (IB = IK).
\(\Rightarrow\) Tứ giác AKCB là hình bình hành (dhnb).
\(\Rightarrow\) CK // AB (Tính chất hình bình hành).
Mà CD // AB (cmt).
\(\Rightarrow\) D, C, K thẳng hàng.
Cho tam giác ABC . Gọi I là trung điểm của cạnh AC . Trên tia đối của tia IB lấy điểm D sao cho IB = ID . Nối C với D
a, CM : tam giác AIB = tam giác CID
b, AD = BC , AD // BC
c, Gọi M là trung điểm của BC , N là trung điểm của AD . CM : I là trung điểm của MN
d, tìm điều kiện của tam giác ABC để AC vuông góc với DC
Cho tam giác ABC,gọi M là trung điểm của BC,biết AM là trung điểm của BC,biết AM=1/2 BC.Chứng minh tam giác ABC là tam giác vuông (có vẽ hình)
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
a) Cho tam giác ABC, M là trung điểm của BC, D trên AC sao cho CD = 2AD. AM cắt BD tại I. Chứng minh I là trung điểm của AM
b) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt AC tại D. Chứng minh AD = 1/2DC
cho tam giác ABC vuông tại A có AB=3cm,BC=5cm. Gọi N là trung điểm BC, trên tia đối N lấy điếm D sao cho ND=NA
a)C/m: tam giác ACN= tam giác DBN
b)Tính BD
c)Gọi M là trung điểm AB. C/m: tam giác MDC cân
d)MD cắt BC tại H, gọi I là trung điểm của AC, DI cắt BC tại K. C/m: tam giác HBD= tam giác KCA
a) Xét ΔACN và ΔDBN có
NA=ND(gt)
\(\widehat{ANC}=\widehat{DNB}\)(hai góc đối đỉnh)
NC=NB(N là trung điểm của BC)
Do đó: ΔACN=ΔDBN(c-g-c)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Ta có: ΔACN=ΔDBN(cmt)
nên AC=DB(hai cạnh tương ứng)
mà AC=4cm(cmt)
nên BD=4cm
Vậy: BD=4cm
c) Xét ΔCAM vuông tại A và ΔDBM vuông tại B có
AC=BD(cmt)
MA=MB(M là trung điểm của AB)
Do đó: ΔCAM=ΔDBM(hai cạnh góc vuông)
Suy ra: MC=MD(Hai cạnh tương ứng)
Xét ΔMCD có MC=MD(cmt)
nên ΔMCD cân tại M(Định nghĩa tam giác cân)
Bài 4 (4,0 điểm): Cho tam giác ABC cân tại A. (AC > BC). Gọi M là trung điểm của BC.
a) Chứng minh: tam giác ABM = tam giác AMC và AM vuông góc với BC.
b) Gọi I là trung điểm của AC. Trên tia đối của tia IM lấy điểm D sao cho ID = IM. Chứng minh: AD = CM.
c) BD cắt AC, AM lần lượt tại G và E. Chứng minh: rAED = rMEB
và BC < 3AG
Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Trên tia đối của OA lấy điểm M sao cho O là trung điểm của AM. Gọi I là trung điểm của BC và G là trọng tâm của tam giác ABC
a. C/m: tứ giác BHCM là hình bình hàng, từ đó suy ra: I là trung điểm của HM
b. C/m: AH=2OI
c. C/m: 3 điểm H,G,O thẳng hàng
a: O là giao điểm của 3 đường trung trực của ΔABC
=>O là tâm đường tròn ngoại tiếp ΔABC
=>AM là đường kính của (O)
Xét (O) có
ΔABM nội tiếp đường tròn
AM là đường kính
=>ΔABM vuông tại B
=>BM vuông góc AB
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kính
=>ΔAMC vuông tại C
=>AC vuông góc CM
=>CM//BH
Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>I là trung điểm của HM
b: Xét ΔMAH có
O,I lần lượt là trung điểm của MA,MH
=>OI là đường trung bình
=>OI//AH và OI=1/2AH
=>AH=2OI
Cho tam giác ABC nhọn dựng phía ngoài tam giác 2 tam giác vuông cân tại A là tam giác ABD và tam giác ACE gọi M là trung điểm của DE chứng minh rằng
a) AM vuông góc với BC và AM=1/2 BC
b) Gọi P là trung điểm của BD; Q là trung điểm của EC và I là trung điểm của BC Tính góc IPQ
c) Chứng minh AI vuông góc với DE