Sắp xếp các đa thức sau rồi thực hiện phép chia:
(17x2 - 6x4 + 5x3 - 23x + 7) : ( 7 - 3x2 - 2x)
Sắp xếp các đa thức theo lũy thừa giảm dần của biến rồi làm phép chia: 5 x 3 + 7 - 3 x 2 : ( x 2 + 1 )
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia: 2 x 2 - 5 x 3 + 2 x + 2 x 4 - 1 : x 2 - x - 1
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia: x 5 - x 2 - 3 x 4 + 3 x + 5 x 3 - 5 : 5 + x 2 - 3 x
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Thực hiện các phép chia đa thức sau:
a) (-5x3 + 15x2 + 18x) : (-5x)
b) (-2x5 – 4x3 + 3x2) : 2x2
a) (-5x3 + 15x2 + 18x) : (-5x)
= (-5x3) : (-5x) + 15x2 : (-5x) + 18x : (-5x)
= [(-5): (-5)] . (x3 : x) + [15 : (-5)] . (x2 : x) + [18 : (-5)]. (x : x)
= x2 – 3x - \(\dfrac{{18}}{5}\)
b) (-2x5 – 4x3 + 3x2) : 2x2
= (-2x5 : 2x2) + (-4x3 : 2x2) + (3x2 : 2x2)
= [(-2) : 2] . (x5 : x2) + [(-4) : 2] . (x3 : x2) + (3 : 2) . (x2 : x2)
= -x3 – 2x + \(\dfrac{3}{2}\)
Sắp xếp các đa thức sau rồi làm phép chia:
(24-x3+3x2+4x+9):(x2+1)
\(\dfrac{2x^4-x^3+3x^2+4x+9}{x^2+1}=\dfrac{2x^4+2x^2-x^3-x+x^2+1+5x+8}{x^2+1}\)
\(=2x^2-x+1+\dfrac{5x+8}{x^2+1}\)
Thực hiện các phép nhân hai đa thức sau:
a) 5x3 – 2x2 + 4x – 4 và x3 + 3x2 – 5
b) -2,5.x4 + 0,5x2 + 1 và 4x3 – 2x + 6
a) (5x3 – 2x2 + 4x – 4) . ( x3 + 3x2 – 5)
= 5x3 . ( x3 + 3x2 – 5) - 2x2 . ( x3 + 3x2 – 5) + 4x . ( x3 + 3x2 – 5) – 4 . ( x3 + 3x2 – 5)
= 5x3 . x3 + 5x3 . 3x2 + 5x3 . (-5) – [ 2x2 . x3 + 2x2 . 3x2 +2x2 . (-5)] + [4x . x3 + 4x. 3x2 + 4x . (-5)] – [ 4x3 + 4.3x2 + 4.(-5)]
= 5x6 + 15x5 – 25x3 – (2x5 + 6x4 – 10x2) + 4x4 + 12x3 – 20x – (4x3 + 12x2 – 20)
= 5x6 + 15x5 – 25x3 – 2x5 - 6x4 + 10x2 + 4x4 + 12x3 – 20x – 4x3 - 12x2 + 20
= 5x6 + (15x5 – 2x5 ) + (- 6x4 + 4x4 ) + (-25x3 + 12x3 – 4x3 ) + (10x2 - 12x2 ) – 20x + 20
= 5x6 + 13x5 – 2x4 – 17x3 -2x2 – 20x + 20
b) (-2,5.x4 + 0,5x2 + 1) . (4x3 – 2x + 6)
= -2,5.x4 . (4x3 – 2x + 6) + 0,5x2 . (4x3 – 2x + 6) + 1. (4x3 – 2x + 6)
= (-2,5.x4) . 4x3 + (-2,5.x4 ) . (-2x) + (-2,5.x4 ) . 6 + 0,5x2 . 4x3 + 0,5x2 . (-2x) + 0,5x2 . 6 + 4x3 – 2x + 6
= -10x7 + 5x5 – 15x4 + 2x5 – x3 + 3x2 + 4x3 – 2x + 6
= -10x7 + ( 5x5 + 2x5 ) - 15x4 + (– x3 + 4x3 ) + 3x2 – 2x + 6
= -10x7 +7x5 - 15x4 + 3x3 + 3x2 – 2x + 6
Sắp xếp các đa thức sau theo lũy thừa giảm của biến rồi thực hiện phép chia: 12 x 2 - 14 x + 3 - 6 x 3 + x 4 : 1 - 4 x + x 2
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
b) Tìm a để đa thức x^4 - x^3 + 6x^2 chia hết cho đa thức x^2 - x + 5
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)