Tìm giá trị \(Q=\dfrac{x^2+x+1}{x^2+2x+1}\) đạt min
Tìm x để:
\(1.P=\dfrac{1}{x^2+2x+6}\) đạt max
\(2.Q=\dfrac{x^2+x+1}{x^2+2x+1}\) đạt min
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)
\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)
\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)
1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)
=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
tìm giá trị Q = \(\frac{x^2+x+1}{x^2+2x+1}\)đạt min
Ta có: \(Q=\frac{x^2+x+1}{x^2+2x+1}\)
\(\Rightarrow\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}\)
Để Q min thì \(\frac{1}{Q}\)max
\(\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}=1+\frac{x}{x^2+x+1}\)
\(=1+\frac{1}{3}+\frac{1}{3}.\frac{-x^2+2x+1}{x^2+x+1}=\frac{4}{3}-\frac{1}{3}.\frac{-\left(x-1\right)^2}{x^2+x+1}\le\frac{4}{3}\)
(Vì mẫu > 0 và tử \(\ge0\))
\(\Rightarrow\frac{1}{Q}\)đạt GTLN là \(\frac{4}{3}\)khi x = 1
Vậy Q đạt GTNN là \(\frac{3}{4}\)khi x = 1
Những sai sót do đánh máy bạn tự sửa hộ m nhé
Cho P=\(\dfrac{1}{x^2-2x}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
a) Rút gọn P
b) Tính giá trị của P biết | 2+x | =1
c) Tìm x để P đạt giấ trị lớn nhất .Tìm giá trị lớn nhất đó
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4
Tìm x để biểu thức:
a) A= 0,6 + \(\left|\dfrac{1}{2}-x\right|\) đạt giá trị nhỏ nhất
b) B= \(\dfrac{2}{3}\) - \(\left|2x+\dfrac{2}{3}\right|\) đạt giá trị lớn nhất
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
Tìm giá trị của biến x để :
\(P=\dfrac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
Lời giải:
$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$
Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$
Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)
Cho biểu thức C =( \(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)):(1-\(\dfrac{x^2-2}{x^2+x+1}\))
a) Rút gọn C
b) Tính giá trị của C biết |1-x| +2 =3(x+1)
c) Tìm x nguyên để C nguyên
d) Tìm x biết |C| > C
e) Tìm x để C2-C + 1 đạt giá trị nhỏ nhất
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
Tìm giá trị của biến x để:
\(P=\dfrac{1}{x^2+2x+6}\) đạt GTLN
\(P=\frac{1}{x^2+2x+6}\)
\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Pmin = 1/5 khi và chỉ khi x = -1
ta có : \(x^2+2x+6=x^2+2x+1+5.\)
\(\Rightarrow\left(x+1\right)^2+5\)
ta có : \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+5\ge5\)
\(\Rightarrow\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)
Vậy GTLN(P) = 1/5 khi x = -1
Tìm x, biết:
Q= \(\dfrac{x^2+x+1}{x^2+2x+1}\) đạt Min
Lời giải:
\(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+2x+1-x}{x^2+2x+1}=1-\frac{x}{x^2+2x+1}=1-\frac{x}{(x+1)^2}\)
Ta thấy \((x+1)^2-4x=x^2-2x+1=(x-1)^2\geq 0\)
\(\Rightarrow (x+1)^2\geq 4x\Rightarrow \frac{x}{(x+1)^2}\leq \frac{x}{4x}=\frac{1}{4}\)
\(\Rightarrow A=1-\frac{x}{(x+1)^2}\geq 1-\frac{1}{4}=\frac{3}{4}\)
Vậy \(A_{\min}=\frac{3}{4}\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\), tức là A đạt min khi $x=1$
Tìm giá trị của biến x để
a/  \(P=\frac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
b/ \(Q=\frac{x^2+x+1}{x^2+2x+1}\)đạt giá trị nhỏ nhất
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)