Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 lúc 20:38

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

 

Hồ Tiến Đức
Xem chi tiết
alibaba nguyễn
15 tháng 1 2017 lúc 11:25

Ta có: \(Q=\frac{x^2+x+1}{x^2+2x+1}\)

\(\Rightarrow\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}\)

Để Q min thì \(\frac{1}{Q}\)max

\(\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}=1+\frac{x}{x^2+x+1}\)

\(=1+\frac{1}{3}+\frac{1}{3}.\frac{-x^2+2x+1}{x^2+x+1}=\frac{4}{3}-\frac{1}{3}.\frac{-\left(x-1\right)^2}{x^2+x+1}\le\frac{4}{3}\)

(Vì mẫu > 0 và tử \(\ge0\))

\(\Rightarrow\frac{1}{Q}\)đạt GTLN là \(\frac{4}{3}\)khi x = 1

Vậy Q đạt GTNN là \(\frac{3}{4}\)khi x = 1

alibaba nguyễn
15 tháng 1 2017 lúc 12:50

Những sai sót do đánh máy bạn tự sửa hộ m nhé

Hatsune Miku
15 tháng 1 2017 lúc 14:28

kick bạn ấy đi bạn ơi hoặc kick mình nè

Hùng Chu
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
22 tháng 6 2021 lúc 20:21

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

Kim Taehyungie
Xem chi tiết
Akai Haruma
22 tháng 2 2021 lúc 22:29

Lời giải:

$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$

Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$

Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 22:43

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)

Hùng Chu
Xem chi tiết
Huỳnh Thị Thanh Ngân
21 tháng 6 2021 lúc 16:27

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

Cỏ dại
Xem chi tiết
Trần Thanh Phương
20 tháng 11 2018 lúc 17:31

\(P=\frac{1}{x^2+2x+6}\)

\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Pmin = 1/5 khi và chỉ khi x = -1

❤  Hoa ❤
20 tháng 11 2018 lúc 17:36

ta có : \(x^2+2x+6=x^2+2x+1+5.\)

\(\Rightarrow\left(x+1\right)^2+5\)

ta có : \(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+5\ge5\)

\(\Rightarrow\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy GTLN(P) = 1/5 khi x = -1 

Nguyễn Thị Thùy Linh
Xem chi tiết
Akai Haruma
26 tháng 11 2018 lúc 22:00

Lời giải:
\(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+2x+1-x}{x^2+2x+1}=1-\frac{x}{x^2+2x+1}=1-\frac{x}{(x+1)^2}\)

Ta thấy \((x+1)^2-4x=x^2-2x+1=(x-1)^2\geq 0\)

\(\Rightarrow (x+1)^2\geq 4x\Rightarrow \frac{x}{(x+1)^2}\leq \frac{x}{4x}=\frac{1}{4}\)

\(\Rightarrow A=1-\frac{x}{(x+1)^2}\geq 1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(A_{\min}=\frac{3}{4}\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\), tức là A đạt min khi $x=1$

Pham Thanh Thuy
Xem chi tiết
tu thi thu trang
22 tháng 2 2017 lúc 18:02

k biet lam

kudo shinichi
26 tháng 3 2020 lúc 14:45

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

Khách vãng lai đã xóa