1, giải bpt sau
2x2 -5x+5>0
BPT 2x2+5x-12≤0 có tất cả bao nhiêu nghiệm nguyên ? , Anh chị còn thức giải giúp em với ạ mai e thi rùi🥲
2x² + 5x - 12 = 0
∆ = 25 + 4.2.12 = 121
x₁ = (-5 + 11)/4 = 3/2
x₂ = (-5 - 11)/4 = -4
Bảng xét dấu
x -∞ -4 3/2 +∞
2x²+5x-12 + - +
Các nghiệm nguyên của bpt là: -4; -3; -2; -1; 0; 1
Vậy bpt đã cho có 6 nghiệm nguyên
Giải bpt sau:
|5 - 2x| - 2|x - 1| ≤ 5x + 3
Giải các phương trình sau:
a) 5 x + 3 x − 1 = 5 x + 7 ; b) 2 x − 1 4 + 3 = 1 − 3 x 6 ;
c) x − 3 2 − x x + 4 + 5 = 0 ; d) 3 x − 1 x + 2 3 − 2 x 2 + 1 2 = 11 2 .
a) x = 10 3 b) x = - 31 12
c) x = 7 5 d) x = 4
`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`
Bài 1: giải các phương trình sau:
a) 2(x+5) - x2 - 5x = 0 b) 2x2 + 3x - 5 = 0
c) ( x - 1)2 + 4(x+2) - (x2 - 3 ) = 0
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow\left(x^2+5x\right)-\left(2x+10\right)=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
b.
\(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{2}\end{matrix}\right.\)
a) 2(x + 5) - x2 - 5x = 0
\(\Leftrightarrow\) 2x + 10 - x2 - 5x = 0
\(\Leftrightarrow\) -x2 - 3x + 10 = 0
\(\Leftrightarrow\) -(x2 + 3x - 10) = 0
\(\Leftrightarrow\) x2 + 3x - 10 = 0
\(\Leftrightarrow\) x2 - 2x + 5x - 10 = 0
\(\Leftrightarrow\) x(x - 2) + 5(x - 2) = 0
\(\Leftrightarrow\) (x + 5)(x - 2) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy.........
b) 2x2 + 3x - 5 = 0
\(\Leftrightarrow\) 2x2 - 2x + 5x - 5 = 0
\(\Leftrightarrow\) 2x(x - 1) + 5(x - 1) = 0
\(\Leftrightarrow\) (2x + 5)(x - 1) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)
Vậy.........
c) (x- 1)2 + 4(x + 2) - (x2 - 3) = 0
\(\Leftrightarrow\) x2 - 2x + 1 + 4x + 8 - x2 + 3 = 0
\(\Leftrightarrow\) 2x + 4 = 0
\(\Leftrightarrow\) 2(x + 2) = 0
\(\Leftrightarrow\) x = -2
Vậy.............
Mấy bn đọc bài mk xong nhớ tik nha
Hãy giải các phương trình sau đây :
1, x2 - 4x + 4 = 0
2, 2x - y = 5
3, x + 5y = - 3
4, x2 - 2x - 8 = 0
5, 6x2 - 5x - 6 = 0
6,( x2 - 2x )2 - 6 (x2 - 2x ) + 5 = 0
7, x2 - 20x + 96 = 0
8, 2x - y = 3
9, 3x + 2y = 8
10, 2x2 + 5x - 3 = 0
11, 3x - 6 = 0
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
Giải bpt sau:
\(\left|x^2-5x+4\right|>x-1\)
$\begin{cases}|x^2-5x+4|>x-1\\x>1\\\end{cases}$
$\to \begin{cases}(x^2-5x+4)^2>(x-1)^2\\x>1\\\end{cases}$
$\to \begin{cases}(x-1)^2(x-4)^2>(x-1)^2\\x>1\\\end{cases}$
$\to \begin{cases}(x-1)^2[(x-4)^2-1]>0\\x>1\\\end{cases}$
$\to \begin{cases}(x-4)^2-1>0\\x>1\\\end{cases}$
$\to \begin{cases}(x-5)(x-3)>0\\x>1\\\end{cases}$
$\to \begin{cases}\left[ \begin{array}{l}x>5\\x<3\end{array} \right.\\x>1\\\end{cases}$
$\to \left[ \begin{array}{l}1<x<3\\x>5\end{array} \right.$
Vậy bất phương trình có tập nghiệm $S=(1,3]∩(5,∞]$
giải bpt sau:
a, x2 -5x+\(\sqrt{x\left(5-x\right)}\) +2<0
b, 2\(\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge0\)
a, Đặt\(\sqrt{x.\left(5-x\right)}=t\) \(\left(0\le t\right)\)
Bpt trở thành: \(-t^2+t+2< 0\)
<=> \(\left[{}\begin{matrix}t< -1\left(loai\right)\\t>2\end{matrix}\right.\)
Với t>2 =>\(\sqrt{x.\left(5-x\right)}>2\)
<=>\(-x^2+5x-4>0\)
<=>\(1< x< 4\)
<=>\(x\in\left(1;4\right)\)
b/ Hiển nhiên rằng vế phải không âm, do đó nghiệm của BPT chính là tất cả các giá trị làm cho biểu thức xác định
Vậy bạn chỉ cần tìm ĐKXĐ cho vế trái là xong (rất đơn giản)
giải BPT sau
a,(4x-1)(x^2+12)(-x+4)>0
b,(2x-1)(5-2x)(1-x)<0
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)