Xét tính đúng - sai của các mệnh đề sau. Nếu mệnh đề sai hãy sửa lại cho đúng:
giúp mình với
Xét các mệnh đề sau:
I . ( − 4 ) ⋅ ( − 25 ) = − 4 ⋅ − 25 I I . ( − 4 ) ⋅ ( − 25 ) = 100 I I I . 100 = 10 IV ⋅ 100 = ± 10
Những mệnh đề nào là sai?
Hãy chọn câu trả lời đúng trong các câu A, B, C, D dưới đây:
A. Chỉ có mệnh đề I sai;
B. Chỉ có mệnh đề II sai;
C. Các mệnh đề I và IV sai;
D. Không có mệnh đề nào sai.
Mệnh đề I sai vì không có căn bậc hai của số âm.
Mệnh đề IV sai vì √100 = 10(căn bậc hai số học)
Các mệnh đề II và III đúng.
Vậy chọn câu C
Xét hai mệnh đề dạng \(P \Rightarrow Q\) sau:
“Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)”;
“Nếu \(a = 2\) thì \({a^2} - 4 = 0\)”.
a) Chỉ ra P, Q và xét tính đúng sai của mỗi mệnh đề trên.
b) Với mỗi mệnh đề đã cho, phát biểu mệnh đề \(Q \Rightarrow P\) và xét tính đúng sai của nó.
a)
+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với
P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.
+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:
P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.
b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:
“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.
“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a = - 2\)).
Xét các mệnh đề sau:
I . ( − 4 ) ⋅ ( − 25 ) = − 4 ⋅ − 25 I I . ( − 4 ) ⋅ ( − 25 ) = 100 I I I . 100 = 10 $ I V . 100 = ± 10
Những mệnh đề nào là sai?
Hãy chọn câu trả lời đúng trong các câu A, B, C, D dưới đây:
A. Chỉ có mệnh đề I sai;
B. Chỉ có mệnh đề II sai;
C. Các mệnh đề I và IV sai;
D. Không có mệnh đề nào sai.
Mệnh đề I sai vì không có căn bậc hai của số âm.
Mệnh đề IV sai vì √100 = 10(căn bậc hai số học)
Các mệnh đề II và III đúng.
Vậy chọn câu C
Hãy phủ định các mệnh đề sau:
P: “ π là một số hữu tỉ”;
Q: “Tổng hai cạnh của một tam giác lớn hơn cạnh thứ ba”.
Xét tính đúng sai của các mệnh đề trên và mệnh đề phủ định của chúng.
Mệnh đề phủ định của P: P− “ π không là một số hữu tỉ”.
P là mệnh đề sai, P− là mệnh đề đúng.
Mệnh đề phủ định của Q: Q− “Tổng hai cạnh của một tam giác nhỏ hơn hoặc bằng cạnh thứ ba”.
Q là mệnh đề đúng, Q− là mệnh đề sai.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ n ∈ N: n chia hết cho n
A: “∀ n ∈ N: n chia hết cho n”
A− : “∃ n ∈ N: n không chia hết cho n”.
A− đúng vì với n = 0 thì n không chia hết cho n.
CÁC BẠN GIẢI JUP MIK VỚI !! :))
Bài 1: Xét tính đúng sai của các mệnh đề sau:
a) Phương trình có hai nghiệm phân biệt.
b) 2k là số chẵn. (k là số nguyên bất kì)
c) 211 – 1 chia hết cho 11.
Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề
P: Tứ giác ABCD là hình vuông.
Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.
Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.
Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.
Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:
Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:
a) Tứ giác ABCD là hình chữ nhật.
b) 16 là số chính phương.
Bài 6: Cho tứ giác ABCD và hai mệnh đề:
P: Tổng 2 góc đối của tứ giác bằng 1800;
Q: Tứ giác nội tiếp được đường tròn.
Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.
Bài 7: Cho hai mệnh đề
P: 2k là số chẵn.
Q: k là số nguyên
Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.
Bài 8: Hoàn thành mệnh đề đúng:
Tam giác ABC vuông tại A nếu và chỉ nếu ...................
- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.
Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.
Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)
Bài 11: Phát biểu điều kiện cần và đủ để một:
Tam giác là tam giác cân.Tam giác là tam giác đều.Tam giác là tam giác vuông cân.Tam giác đồng dạng với tam giác khác cho trước.Phương trình bậc 2 có hai nghiệm phân biệt.Phương trình bậc 2 có nghiệm kép.Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.
Bài 13: Xét tính đúng sai của mệnh đề:
Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.
Bài 14: Phát biểu và chứng minh định lí sau:
a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.
b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.
(Chứng minh bằng phản chứng)
Xét hai mệnh đề sau:
(1) Nếu ABC là tam giác đều thì nó là tam giác cân
(2) Nếu 2a – 4 > 0 thì a > 2
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Mỗi mệnh đề trên đều có dạng “Nếu P thì Q”. Chỉ ra P và Q ứng với mỗi mệnh đề đó.
a)
(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.
(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.
b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì nó là tam giác cân”
P: “ABC là tam giác đều”
Q: “ABC là tam giác cân”
Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2”
P: “2a – 4 > 0”
Q: “a > 2”
Chú ý
Từ “nó” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
B: “∃ x ∈ Q : x2 = 2”.
B− : “∀ x ∈ Q : x2 ≠ 2”
B− đúng.
Lưu ý: √2 là số vô tỷ.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∀ x ∈ R : x < x + 1
C: “∀ x ∈ R : x < x + 1”.
C− : “∃ x ∈ R: x ≥ x + 1”.
C− sai vì x + 1 luôn lớn hơn x.