Xác định \(a,b\) để đa thức \(x^4-3x^3+2x^2-ax+b⋮\left(x^2-x-2\right)\)
Xác định các hệ số a,b để:
a) Đa thức \(x^4+3x^3-17x^2+ax+b⋮\left(x^2+5x-3\right)\)
b) Đa thức \(x^5+7x^4+ax^2+bx+72⋮\left(x^3-2x^2+4\right)\)
c) Đa thức \(4x^3+ax+b:\left(x^2-1\right)\)dư 2x-3
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
Xác định hệ số a và b để đa thức (x^4-x^3-3x^2+ax+b)chia cho đa thức (x^2-x-2)được dư là (2x-3).Tìm x
Xác định các hệ số a,b,c để đa thức:
\(f\left(x\right)=x^5-2x^4-6x^3+ax^2+bx+c\) chia hết cho đa thức \(g\left(x\right)=\left(x^2-1\right)\left(x-3\right)\)
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
xác định các hệ số a,b để đa thức
\(A=x^4-2x^3+3x^2+ax+b\) là bình phuong của 1 đa thức
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
C1: Xác định a, b để \(x^4-3x^2+ax+b\) chia hết cho \(x^2-3x+2\)
C2: sắp xếp các đa thức rồi đặt phép chia (chỉ cần sắp xếp giùm mk thôi còn mk tự chia)
a, \(\left(6x^6+2x^5-2+7x+x^2-15x^3-2x^4\right):\left(x+3x-1\right)\)
b, \(\left(17x^2-6x^4+5x^3-23x+7\right):\left(7-3x^2-2x\right)\)
làm nhanh giúp mk nhé mơn
C1: Gọi đa thức thương là Q(x)
Vì x^4 : x^2 = x^2
=> đa thức có dạng x^2+mx+n
Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2
=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)
x^4+ 0x^3 - 3x^2 +ax+b = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n
x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n
<=>| 0 = m-3 <=> | m = 3
| 3=3m-n-2 | b= 8
| a=2m-3n | n = 4
| b = 2n | a = -6
Vậy a= -6, b= 8
Cho 2 đa thức :
\(A\left(x\right)=2x^3+3x^2-x+a\)
\(B\left(x\right)=2x+1\)
a)Tìm đa thức thương và đa thức dư trong phép chia 2 đa thức A(x) và B(x)
b)Xác định a để đa thức A(x)luôn chia hết cho đa thức B(x)
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Xác định a,b để đa thức x4-3x3+2x2-ax+b chia hết cho (x2-x-2)
Cho mình làm lại :
Để phép chia hết thì \(xa-3x+b+2=0\)
Đặt \(x=0\Rightarrow b+2=0\)
\(\Rightarrow b=-2\)
Đặt \(x=1\Rightarrow a-3+2+\left(-2\right)=0\)
\(\Rightarrow a=3\)
Vậy ...
( ͡° ͜ʖ ͡°)
Để phép chia hết thì \(\left(a-3\right)x+\left(b+2\right)=xa-3x+b+2=0\)
Ta có: \(x^2-x-2\) có 2 nghiệm là -1 và 2 nên \(x^2-x-2=\left(x+1\right)\left(x-2\right)\)
Giả sử
\(x^4-3x^2-ax+b=\left(x^2-x-2\right).q\left(x\right)=\left(x+1\right)\left(x-2\right)q\left(x\right)\)
Thay x = -1 và x = 2 vào ta có:
\(\hept{\begin{cases}\left(-1\right)^4-3\left(-1\right)+a+b=0\\2^4-3.2-a.2+b=0\end{cases}}\)
\(\hept{\begin{cases}a+b=-4\\-2a+b=-10\end{cases}}\)
Giải hệ với ẩn a, b bằng phương pháp thế: rút b = - a - 4 từ phương trình trên thay xuống phương trình dưới ta được:
-2a - a - 4 = -10 => a = 2
=> b = -2 -4 = -6
Vậy a = 2, b = -6
Tìm các số a, b để đa thức \(f\left(x\right)=6x^4-7x^3+ax^2+3x+2\) chia hết cho đa thức \(f_2\left(x\right)=x^2-x+b\)