Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ninh
Xem chi tiết
Vũ Tiến Manh
1 tháng 10 2019 lúc 17:18

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3

Vũ Thành Trung
Xem chi tiết
Lê Thị Hoài Thanh
Xem chi tiết
0o0 Nhok kawaii 0o0
Xem chi tiết
Trần Thanh Phương
21 tháng 4 2019 lúc 11:09

Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )

Khi đó ta có pt :

\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)

\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)

Vì pt trên đúng với mọi x nên :

+) đặt \(x=1\)

\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)

\(\Leftrightarrow-7+a+b+c=0\)

\(\Leftrightarrow a+b+c=7\)(1)

Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :

\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)

Từ (1) và (2) ta có hệ pt 3 ẩn :

\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)

Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)

Vậy....

Thanh Tu Nguyen
Xem chi tiết
Hà Quang Minh
26 tháng 7 2023 lúc 23:14

\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)

Vậy a = -2; b = 1.

Trần Đức Bình
8 tháng 11 lúc 22:27

G

Mẫn Loan
Xem chi tiết
Thanh Nga
26 tháng 11 2017 lúc 15:43

C1: Gọi đa thức thương là Q(x)

Vì x^4 : x^2 = x^2

=> đa thức có dạng x^2+mx+n

Đề x^4 - 3x^2 + ax+b chia hết x^2 - 3x + 2

=> x^4 - 3x^2 + ax + b = (x^2 - 3x + 2)(x^2 + mx + n)

x^4+ 0x^3 - 3x^2 +ax+b  = x^4 +mx^3 +(x^2)n -3x^3 -3mx^2 - 3xn + 2x^2 + 2mx + 2n

x^4 + 0x^3 -3x^2 + ax+b = x^4 + x^3(m-3) - x^2(3m - n -2) +x(2m - 3n) +2n

<=>| 0 = m-3                     <=> | m = 3

| 3=3m-n-2                                | b= 8

| a=2m-3n                                 | n = 4

| b = 2n                                     | a = -6

Vậy a= -6, b= 8

Soái muội
Xem chi tiết
Lê Tài Bảo Châu
22 tháng 10 2019 lúc 21:11

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

Khách vãng lai đã xóa
Mai Chi Trần
Xem chi tiết
Le Thi Khanh Huyen
23 tháng 10 2016 lúc 12:16

Cho mình làm lại :

undefined

Để phép chia hết thì \(xa-3x+b+2=0\)

Đặt \(x=0\Rightarrow b+2=0\)

\(\Rightarrow b=-2\)

Đặt \(x=1\Rightarrow a-3+2+\left(-2\right)=0\)

\(\Rightarrow a=3\)

Vậy ...

Le Thi Khanh Huyen
23 tháng 10 2016 lúc 12:05

( ͡° ͜ʖ ͡°)

( ͡° ͜_ ͡°) x^4 - 3x^3 + 2x^2 - ax + b x^2 - x - 2 x^2 - 2x +1 x^4 - x^3 - 2x^2 -2x^3 + 3x^2 - ax + b -2x^3 + 2x^2 +4x x^2 -(a-4)x+b x^2 - x - 2 (a-3)x+(b+2)

Để phép chia hết thì \(\left(a-3\right)x+\left(b+2\right)=xa-3x+b+2=0\)

GV
23 tháng 10 2016 lúc 12:50

Ta có: \(x^2-x-2\) có 2 nghiệm là -1 và 2 nên \(x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Giả sử 

\(x^4-3x^2-ax+b=\left(x^2-x-2\right).q\left(x\right)=\left(x+1\right)\left(x-2\right)q\left(x\right)\)

Thay x = -1 và x = 2 vào ta có:

\(\hept{\begin{cases}\left(-1\right)^4-3\left(-1\right)+a+b=0\\2^4-3.2-a.2+b=0\end{cases}}\)

 \(\hept{\begin{cases}a+b=-4\\-2a+b=-10\end{cases}}\)

Giải hệ với ẩn a, b bằng phương pháp thế: rút b = - a - 4 từ phương trình trên thay xuống phương trình dưới ta được:

  -2a - a - 4 = -10 => a = 2

=> b = -2 -4 = -6

Vậy a = 2, b = -6

Big City Boy
Xem chi tiết