Cho n\(\in\)z
Cm: (n3-1)n3(n3+1)\(⋮\)504
Cho dãy số U n xác định bởi
U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 , n ≥ 1
Hãy tính tổng S = u 1 + u 2 + . . + u 2018 4 - 1
A. 2016
B. 2017
C. 2018
D. 2019
Ta có:
U n = 1 n 3 4 + n 3 + 3 n 2 + 3 n + 1 4 1 n 3 + 2 n 2 + n 4 + n 3 + n 2 4 = 1 n n 4 + n n + 1 4 1 n + 1 n 4 + n + 1 n + 1 4 = 1 n n 4 + n + 1 4 1 n + 1 n 4 + n + 1 4 = 1 n + n + 1 1 n 4 + n + 1 4 = n + 1 4 - n 4 n + 1 + n 1 n + 1 - n = n + 1 4 - n 4 , n ≥ 1
Khi đó
S = u 1 + u 2 + . . + u 2018 4 - 1 = 2 4 - 1 4 + 3 4 - 2 4 + . . + 2018 4 4 - 2018 4 - 1 4 = 2018 4 4 - 1 = 2017
Đáp án B
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Cho A = n6 + 10n4 + n3 + 98n – 6n5 – 26 và B = 1 + n3 – n. Chứng minh với mọi n nguyên thì thương của phép chia A cho B là bội số của 6.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
Bài 2: Tính giá trị của các biểu thức sau
a) A = 2 (m3 + n3) − 3 (m2 + n2), với m + n = 1;
b) B = 2m6 + 3m3n3 + n6 + n3, với m3 + n3 = 1;
c) C = (a − 1)3 − 4a (a + 1) (a − 1) + 3 (a − 1) (a2 + a + 1) với a = −3;
d) D = (y − 1) (y − 2) (1 + y + y2) (4 + 2y + y2) với y = 1
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
n3 - 1 ⋮ n + 1
Ta có: \(n^3-1⋮n+1\)
\(\Leftrightarrow n^3+n^2-n^2-n+n+1-2⋮n+1\)
\(\Leftrightarrow n^2\left(n+1\right)-n\left(n+1\right)+\left(n+1\right)-2⋮n+1\)
\(\Leftrightarrow\left(n+1\right)\left(n^2-n+1\right)-2⋮n+1\)
mà \(\left(n+1\right)\left(n^2-n+1\right)⋮n+1\)
nên \(-2⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-2\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{0;-2;1;-3\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3\right\}\)
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Chứng minh n3 +17n ⋮ 6 với mọi n ∈ Z
\(n^3+17n=n^3-n+18n=n\left(n-1\right)\left(n+1\right)+18n\)
Dễ thấy: \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)⋮3!=6\\18n⋮6\end{matrix}\right.\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)+18n⋮6\) hay \(n^3+17n⋮6\left(đpcm\right)\).
*Lưu ý: Ở đây ta sử dụng tính chất: "Trong n số tự nhiên liên tiếp luôn tồn tại duy nhất 1 số chia hết cho n".
Trong 3 số n,n-1.n+1 có 1 số chia hết cho 2 và có 1 số chia hết cho 3. Do đó tích 3 số này sẽ chia hết cho 6.
chứng minh (n-1)3+n3+(n+1)3 chia hết cho 9
Hòa tan hoàn toàn hai chất rắn X, Y có số mol bằng nhau vào nước, thu được dung dịch Z. Tiến hành các thí nghiệm sau:
- Thí nghiệm 1: Cho Z phản ứng với dung dịch BaCl2, thấy có n1 mol BaCl2 phản ứng.
- Thí nghiệm 2: Cho Z phản ứng với dung dịch HCl, thấy có n2 mol HCl phản ứng.
- Thí nghiệm 3: Cho Z phản ứng với dung dịch NaOH, thấy có n3 mol NaOH phản ứng.
Biết các phản ứng xảy ra hoàn toàn và n1 < n3 < n2 và n3 : n2 = 2 : 3. Hai chất X, Y lần lượt là:
A. NH4HCO3, Na2CO3.
B. NH4HCO3, (NH4)2CO3.
C. NaHCO3, (NH4)2CO3.
D. NaHCO3, Na2CO3.
Hòa tan hoàn toàn hai chất rắn X, Y có số mol bằng nhau vào nước, thu được dung dịch Z. Tiến hành các thí nghiệm sau:
- Thí nghiệm 1: Cho Z phản ứng với dung dịch BaCl2, thấy có n1 mol BaCl2 phản ứng.
- Thí nghiệm 2: Cho Z phản ứng với dung dịch HCl, thấy có n2 mol HCl phản ứng.
- Thí nghiệm 3: Cho Z phản ứng với dung dịch NaOH, thấy có n3 mol NaOH phản ứng.
Biết các phản ứng xảy ra hoàn toàn và n1 < n3 < n2 và n3 : n2 = 2 : 3. Hai chất X, Y lần lượt là:
A. NH4HCO3, Na2CO3.
B. NH4HCO3, (NH4)2CO3.
C. NaHCO3, (NH4)2CO3.
D. NaHCO3, Na2CO3.