Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Anh Hoàng
Xem chi tiết
Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Hey hey
Xem chi tiết
Phan Nghĩa
2 tháng 8 2020 lúc 19:56

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
2 tháng 8 2020 lúc 20:03

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
2 tháng 8 2020 lúc 20:06

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

ĐKXĐ : \(x\ne0,x\ne2\)

a) \(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x\cdot x}{x\left(x-2\right)}\right)\)

\(B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4-x^2}{x\left(x-2\right)}\right)\)

\(B=\frac{3x-4}{x\left(x-2\right)}\cdot\frac{x\left(x-2\right)}{-4}\)

\(B=\frac{3x-4}{-4}=\frac{-3x+4}{4}\)

b) Thế x = -2 ( tmđk ) vào B ta được :

\(B=\frac{-3\cdot\left(-2\right)+4}{4}=\frac{10}{4}=\frac{5}{2}\)

c) \(\left|B\right|-2x=5\)

\(\Leftrightarrow\left|\frac{-3x+4}{4}\right|-2x=5\)

\(\Leftrightarrow\frac{-3x+4}{4}-2x=5\)

\(\Leftrightarrow\frac{-3x+4}{4}-\frac{8x}{4}=5\)

\(\Leftrightarrow\frac{-3x+4-8x}{4}=5\)

\(\Leftrightarrow\frac{-11x+4}{4}=5\)

\(\Leftrightarrow-11x+4=20\)

\(\Leftrightarrow-11x=16\)

\(\Leftrightarrow x=-\frac{16}{11}\)

Nhờ các bạn khác làm nốt ạ -.-

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
Ngoc Anhh
2 tháng 9 2018 lúc 22:44

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

KAl(SO4)2·12H2O
2 tháng 9 2018 lúc 22:53

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

Tớ Đông Đặc ATSM
2 tháng 9 2018 lúc 23:17

a, A <=> \(x^2-2x\frac{3}{2}+\left(\frac{3}{2}\right)^2+2,75\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+2,75\)

ta có \(\left(x-\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A\ge2,75\) 

=> Min A =2,75 \(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

b, \(B\Leftrightarrow4x^2-4x+1+x^2+4x+4\)

\(B\Leftrightarrow5x^2+5\) 

Ta có \(5x^2\ge0\Rightarrow B\ge5\)

=> Min B = 5 <=> x=0

c,\(C\Leftrightarrow-\left(x^2-4x+4-7\right)\)

\(C\Leftrightarrow7-\left(x-2\right)^2\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow C\le7\)

=> Max C=7 <=> ( x - 2 )2 = 0 <=> x=2

d, \(C=x^4+x^2+2\)

Lại có \(x^4+x^2\ge0\)

\(\Rightarrow C\ge2\). Để Min C= 2 <=> \(x^4+x^2=0\Leftrightarrow x^2\left(x^2+1\right)=0\)\(\Leftrightarrow x=0\)

f,F \(F\Leftrightarrow-\left(\left(3x\right)^2-2.3x.2+2^2-19\right)\)

\(F\Leftrightarrow19-\left(3x-2\right)^2\)

ta có \(\left(3x-2\right)^2\ge0\)

=> \(F\le19\)

Để Max F =19 <=> x=\(\frac{2}{3}\)

le thi khanh huyen
Xem chi tiết
Minh tú Trần
Xem chi tiết
Nguyễn Minh Đăng
27 tháng 7 2020 lúc 10:42

Bài làm:

a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\)=> không phụ thuộc GT biến

b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)

\(=2x^2+6x-7x-2x^2+35+10x\)

\(=9x+35\)=> có phụ thuộc GT biến

c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)

\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)

\(=0\)=> không phụ thuộc GT biến

Khách vãng lai đã xóa
Trần Nguyễn Thái
27 tháng 7 2020 lúc 10:49

cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18 

Khách vãng lai đã xóa
FL.Han_
27 tháng 7 2020 lúc 10:52

\(a,3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2-3x+18x-18\)

\(=30x+18\)

\(b,2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)

\(=2x^2+6x-7x+2x^2-35+10x\)

\(=4x^2+9x-35\)

\(c,5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)

\(=5x^3-35x^2+10x-5x^3-8x^2+27x^2-10x\)

\(=-8x^2\)

Khách vãng lai đã xóa
ninja siêu đẳng
Xem chi tiết
ninja siêu đẳng
7 tháng 12 2018 lúc 5:23

các bạn giải nhanh cho mình nhé vì mình đang cần gấp

Pham Van Hung
7 tháng 12 2018 lúc 12:40

Mình nghĩ bạn viết hơi sai đề bài.

\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)

Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)

\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)

Khi đó:

 \(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)

ninja siêu đẳng
7 tháng 12 2018 lúc 13:10

um, cảm ơn bạn Pham Van Hung, có lẽ là mình chép sai đầu bài

Lê Văn Thắng
Xem chi tiết
Minh Anh
28 tháng 8 2016 lúc 20:34

\(B=1,5+\left|2-x\right|\)

Có: \(\left|2-x\right|\ge0\)

\(\Rightarrow1,5+\left|2-x\right|\ge1,5\)

Dấu = xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy:  \(Min_A=1,5\)tại \(x=2\)

Minh Anh
28 tháng 8 2016 lúc 20:36

\(C=-\left|x+2\right|\) . Có: \(-\left|x-2\right|\le0\)

Dấu = xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy: \(Max_C=0\) tại \(x=-2\)

Minh Anh
28 tháng 8 2016 lúc 20:38

\(C=1-\left|2x-3\right|\) . Có: \(\left|2x-3\right|\ge0\)

\(\Rightarrow1-\left|2x-3\right|\le1\)

Dấu = xảy ra khi: \(2x-3=0\Rightarrow x=\frac{3}{2}\)

Vậy: \(Max_C=1\) tại \(x=\frac{3}{2}\)

Nguyễn Hoàng Vi
Xem chi tiết
Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 9:27

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

Võ Đông Anh Tuấn
25 tháng 7 2016 lúc 9:33

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)