cho tam giac ABC vuong tai A co goc C bang 30. Chung minh BC=2AB
Cho tam giac ABC vuong tai A co goc C bang 30 do chung minh BC =2AB
cho tam giac ABC vuong tai A co goc C bang 30 do chung minh BC = 2AB
Cho tam giac ABC vuong tai A co goc C bang 30 do chung minh BC =2AB
cho tam giac ABC vuong tai A co AB = 8cm, BC = 10cm a) Tinh AC, b) tren tia AC lay diem D sao cho AD = AC. Ve AE vuong goc BD tai E, ve AF vuong goc BC tai F. Chung minh tam giac ABE = tam giac ABF, c) Ve duong thang vuong goc BD tai D duong thang vuong goc BC tai C. Hai duong thang nay cat nhau ta M. Chung minh: tam giac MDC can, D) Chung minh: B,A, M thang hang
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
cho tam giac ABC co AB bang AC bang 5 cm ; BC bang 6 cm . ke AH vuong BC , h thuoc bc
a , chung minh HB bang HC va BAH bang CAH
B, tinh do dai AH
c, ke HM vuong AB tai M , ke HN vuong AC tai N . Chung minh tam giac MHN la tam giac can
d, ke tia Bx vuong BA , ke Cy vuong AC ; hai tia Bx va Cy cat nhau tai I .Chung minh AI vuong goc voi BC
tu ve hinh :
a, AC = AB => tamgiac ABC can tai A (dn)
=> goc ABC = goc ACB (tc)
xet tam giac ABH va tamgiac ACH co : goc AHC = goc AHB do AH | BC (gt)
=> tam giac ABH = tamgiac ACH (ch - gn) (1)
b, tamgiac AHB vuong tai H do AH | BC (gt)
=> AB2 = AH2 + BH2
(1) => BH = HC ma BC = 6 (gt)=> BH = 3
BA = 5 (gt)
=> AH2 = 52 - 32
=> AH2 = 16
=> AH = 4 do AH > 0
c, xet tamgiac BMH va tamgiac NCH co : goc BMH = goc NCH = 90o do MH | AB va HN | AC (gt)
goc ABC = goc ACB (cmt) va BH = HC (cmt)
=> tamgiac BMH = tamgiac NCH (ch - gn)
=> MH = HN (dn)
=> tamgiac MNH can tai H (dn)
d, cm theo truong hop ch - gn di, moi tay qa
Giải
( Bạn tự vẽ hình nhé )
a, \(AB=AC\) \(\Rightarrow\)\(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta ABH\) và \(\Delta ACH\) có : \(\widehat{AHC}=\widehat{AHB}\) do \(AH\perp BC\)
\(\Delta ABH=\Delta ACH\) (1) [ đpcm]
b, \(\Delta AHB\) vuông tại H do \(AH\perp BC\)
\(\Rightarrow AB^2=AH^2+BH^2\)
Từ (1) suy ra BH = HC mà BC = 6 nên BH = 3
\(\Rightarrow\)BA = 5
\(\Rightarrow AH^2=5^2-3^2\)
\(\Rightarrow AH^2=25-9\)
\(\Rightarrow AH^2=16\)
\(\Rightarrow AH=\sqrt{16}\)
\(\Rightarrow AH=4cm\)
\(\Rightarrow\) AH = 4cm do AH > 0
c, Xét \(\Delta BMH\) và \(\Delta NCH\) có :\(\widehat{BMH}=\widehat{NCH}=90^0\) do \(MH\perp AB\) va \(HN\perp AC\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)và \(BH=HC\)
\(\Rightarrow\Delta BHM=\Delta NCH\)
\(\Rightarrow MH=HN\)
\(\Rightarrow\Delta MNH\) cân tại H \(\left(đpcm\right)\)
d, ...
cho tam giac ABC vuong can tai A.Tren AB,AC lay D,E sao cho AD=AE.Duong thang qua D vuong goc voi BE cat BC tai M va AC tai P.AN vuong goc voi BE(N thuoc BC)
a)chung minh tam giac ABE bang tam giac APD
b)Chung minh MN=NC
cho tam giac ABC vuong can tai A.Tren AB,AC lay D,E sao cho AD=AE.Duong thang qua D vuong goc voi BE cat BC tai M va AC tai P.AN vuong goc voi BE(N thuoc BC)
a)chung minh tam giac ABE bang tam giac APD
b)Chung minh MN=NC
cho tam giac abc vuong tai a co goc b bang 60 do tren canh bc lay diem h sao cho hb=ab duong vuong goc voi bc tai h cat ac tai d
a/ cm bd la tia phan giac cua goc adc
b/ chung to tam giac bdc can
cho tam giac ABC co goc C =30 duong trung truc AC cat AC tai H va cat BC tai D
a)chung minh tam giac ABD deu
b)ke phan giac goc B cat AD tai K cat DH tai I chung minh IA=ID=IC
c)chung minh AE<\(\frac{AB+BC}{2}\) voi IE vuong goc voi BC tai E