(a-b+c)^2+(c-b)^2+2×(a-b+c)×(b-c)
Bài 1: CMR
a/ 2*(a^3+ b^3+ c^3- 3abc)=(a+b+c)*((a-b)^2+(b-c)^2+(c-a)^2)
b/ (a+b)*(b+c)*(c+a)+4abc=c*(a+b)^2+a*(b+c)^2+b*(c+a)^2
c/ (a+b+c)^3=a^3+b^3+c^3+3*(a+b)*(b+c)*(c+a)
Bài 2: Cho a+b+c=4m.CMR:
a/ 2ab+ a^2+ b^2- c^2=16m^2- 8mc
b/ (a+b-c/2)^2+(a-b+c/2)^2+(b+c-a/2)^2=a^2+b^2+c^2-4m^2
Ta có :
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b) - 3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)
=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)a(b+c−a)2+b(c+a−b)2+c(a+b−c)2+(a+b−c)+(b+c−a)+(c+a−b)
giúp mình làm bài này đi rrooiif mình giúp cho
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
1. Rút gọn:
a) ( a^2 + b^2 + c^2 )^2 - (a^2 - b^2 - c^2 )^2
b) (a+b+c)^2 - (a-b-c)^2 - 4ac
c) (a+b+c)^2 - (a+b)^2 - (a+c)^2-(b+c)^2
d) (a+b+c)^2 + (a-b+c)^2 +(a+b-c)^2 + (-a+b+c)^2
a) ( a2 + b2+ c2)2 - ( a2 - b2 - c2)2
= ( a2 + b2+ c2 + a2 - b2 - c2)( a2 + b2+ c2 - a2 + b2 + c2)
= 4a2( b2 + c2)
b) ( a + b + c)2 - ( a - b - c)2 - 4ac
= ( a + b + c - a + b + c)( a + b + c + a - b - c) - 4ac
= 4a( b + c) - 4ac
= 4a( b + c - c)
= 4ab
Bài 1: Cho a,b,c thỏa mãn (a+b-c)/c=(b+c-a)/a=(c+a-b)/b
tính P=(1+b/a)*(1+c/b)*(1+a/c)
Bài 2: Cho a+b+c=0
tính B=((a^2+b^2-c^2)*(b^2+c^2-a^2)*(c^2+a^2-b^2))/(10*a^2*b^2*c^2)
Bài 3: cho a^3*b^3+b^3*c^3+c^3*a^3=3*a^3*b^3*c^3
tính M(1+a/b)*(1+b/c)*(1+c/a)
Bài 4: cho 3 số a,b,c TM a*b*c=2016
tính P=2016*a/(a*b+2016*a+2016) + b/(b*c+b+2016) + c/(a*c+c+1)
Bài 5: cho a+b+c=0
tính Q=1/(a^2+b^2-c^2) + 1/(b^2+c^2-a^2) + 1/(a^2+c^2-b^2)
ptích => ntử :
Câu 1: a(b+c)^2((b-c)+B(c+a)^2(c-a)+c(a+b)^2(a+b);
Câu 2: a(b-c)^3+b(c-a)^3+c(a-b)^3
Câu 3 :a^2b^2(a-b)+b^2c^2(b-c)+c^2+a^2(c-a)
Câu 4: a(b^2+c^2)+(c^2+a^2)+c(a^2+b^2)-2abc-a^3-b^3-c^3
Câu 5: a^4(b-c)+b^4(c-a)+c^4(a-b)
1)Rút gọn biểu thức
a)(a+b-c)^2+(a-b+c)^2-2(b-c)^2
b)(a+b+c)^2+(a-b-c)^2+(b-c-a)^2+(c-a-b)^2
c)(a+b+c+d)^2+(a+b-c-d)^2+(a+c-b-d)^2+(a+d-c-b)^2
2)CMR:(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz) với x,y,z khác 0 thì x/a=b/y=c/z
3)Cho (a+b+c)^2=3(a^2+b^2+c^2).CMR a=b=c
4)Cho (a+b+c)^2=3(ab+bc+ca).CMR a=b=c
chứng minh các hằng đằng thức sau :
a)(a+b+c)^2 +(b+c-a)^2 +(c+a-b)^2 +(a+b-c)^2=4(a^2+b^2+c^2)
b)(a+b+c+d)^2 +(a+b-c-d)^2 +(a+c-b-d)^2 +(a+c-b-d)^(a+d-b-c)^2=4(a^2+b^2+c^2+d^2)
Bổ đề : Chứng minh (a + b)2 + (a - b)2 = 2(a2 + b2)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)
Áp dụng vào bài toán,ta có :
a) (a + b + c)2 + (b + c - a)2 + (c + a - b)2 + (a + b - c)2
= 2[(b + c)2 + a2] + 2[a2 + (b - c)2] = 2[2a2 + (b + c)2 + (b - c)2] = 2[2a2 + 2(b2 + c2)] = 4(a2 + b2 + c2)
b) (a + b + c + d)2 + (a + b - c - d)2 + (a + c - b - d)2 + (a + d - b - c)2
= 2[(a + b)2 + (c + d)2] + 2[(a - b)2 + (c - d)2] = 2[(a + b)2 + (a - b)2 + (c + d)2 + (c - d)2]
= 2[2(a2 + b2) + 2(c2 + d2)] = 4(a2 + b2 + c2 + d2)
câu a) cái khúc =2[(b+c)^2 +a^2] +2[a^2 +(b-c)^2] là răng
ghi rõ ra dùm
(a + b + c)2 + (b + c - a)2 = [(b + c) + a]2 + [(b + c) - a]2 = 2[(b + c)2 + a2]
(c + a - b)2 + (a + b - c)2 = [a - (b - c)]2 + [a + (b - c)]2 = 2[a2 + (b - c)2]
Cho a, b, c > 0. CM:
a) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
b) \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{a^2+c^2}{a+c}\le\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
c) \(\frac{a^2+b^2}{a^2-2ab+b^2}+\frac{b^2+c^2}{b^2-2bc+c^2}+\frac{c^2+a^2}{c^2-2ac+a^2}\ge\frac{5}{2}\)
(a, b, c đôi một khác nhau)
1) Tính giá trị của biểu thức
a) (a+b+c)^2+(a-b-c)^2 tại b=1,c=-2,a=2021
b) (a+b+c)^2+(a+b-c)^2-2.(a+b)^2 tại c=-10
c) (a+b+c)^2+(-a+b+c)^2+(a-b+c)^2+(a+b-c)^2 với a^2+b^2+c^2=10