( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 15
Phân tích đa thức thành nhân tử:
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
phân tích đa thức sau thành nhân tử:
(x+1).(x+3).(x+5).(x+7)+15
\(=\left(x^2+8x+15\right)\left(x^2+8x+7\right)+15\)
đặt:\(^{x^2+8x+11=t}\)
ta co \(\left(t+4\right)\left(t-4\right)+15=t^2-16+15=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\Rightarrow\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(\Rightarrow\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
Phân tích đa thức thành nhân tử:
C = (x + 1)(x +3)(x + 5)(x + 7) + 15
\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)
Đặt \(x^2+8x+11=t\) , khi đó
\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+7\) thì C trở thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(C=\left(x^2+8+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=k\)
\(\Rightarrow C=k\left(k+8\right)+15=k^2+8k+15\)
\(\Rightarrow C=k^2+3k+5k+15\)
\(\Rightarrow C=k\left(k+3\right)+5\left(k+3\right)\)
\(\Rightarrow C=\left(k+3\right)\left(k+5\right)\)
\(\Rightarrow C=\left(x^2+8x+7+6\right)\left(x^2+8x+7+3\right)\)
\(\Rightarrow C=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow C=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Bài 1: Phân tích đa thức thành nhân tử :
B = ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 15
tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html
tí mình gửi qua cho
học tốt
\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)
Đặt \(x^2+8x+11=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+15\)
\(=t^2-16+15\)
\(=t^2-1\)
\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:
\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)
Bài làm
B = ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 15
B = [ ( x + 1 ) ( x + 7 ) ] [ ( x + 3 ) ( x + 5 ) ] + 15
B = [ x2 + 7x + x + 7 ] [ x2 + 5x + 3x + 15 ] + 15
B = [ x2 + 8x + 7 ] [ x2 + 8x + 15 ] + 15
Đặt [ x2 + 8x + 7 ] [ x2 + 8x + 15 ] + 15 = k
=> B = k . ( k + 8 ) + 15
=> B = k2 + 8k + 15
=> B = k2 + 3k + 5k + 15
=> B = ( k2 + 5k ) + ( 3k + 15 )
=> B = [ k( k + 5 ) ] + [ 3( k + 5 ) ]
=> B = ( k + 5 ) ( k + 3 )
Hay B = ( x2 + 8x + 7 + 3 ) ( x2 + 8x + 7 + 5 )
=> B = ( x2 + 8x + 10 ) ( x2 + 8x + 12 )
=> B = ( x2 + 8x + 10 ) ( x2 + 2x + 6x + 12 )
=> B = ( x2 + 8x + 10 ) [ ( x2 + 6x ) + ( 2x + 12 )]
=> B = ( x2 + 8x + 10 ) [ x( x + 6 ) + 2( x + 6 ) ]
=> B = ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )
# Học tốt #
Phân tích các đa thức sau thành nhân tử:(đặt biến phụ)
(x+1)(x+3)(x+5)(x+7)+15.
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
f(x) = (x+1)(x+3)(x+5)(x+7)+15
= (x+1)(x+7)(x+3)(x+5)+15
= (x2+7x+x+7)(x2+5x+3x+15)+15
= (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
Phân tích các đa thức sau thành nhân tử:(đặt biến phụ)
(x+1)(x+3)(x+5)(x+7)+15.
HELP ME!!!!!
f(x) = (x+1)(x+3)(x+5)(x+7)+15
= (x+1)(x+7)(x+3)(x+5)+15
= (x2+7x+x+7)(x2+5x+3x+15)+15
= (x2+8x+7)(x2+8x+15)+15
Đặt X=x2+8x+11
f(x) = (X-4)(X+4)+15
= X2-16+15
= X2-12
= (X-1)(X+1)
=> f(x)= (x2+8x+11-1)(x2+8x+11+1)
f(x) = (x2+8x+10)(x2+8x+12)
Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:
f(x) = (x2+8x+10)(x2+8x+12)
= (x2+8x+10)[(x2+2x)+(6x+12)]
= (x2+8x+10)[x(x+2)+6(x+2)]
= (x+2)(x+6)(x2+8x+10)
A=(x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)][(x+3)(x+5)]+15=(x2+8x+7)(x2+8X+15)+15
Đặt t=x2+8x+7=> A=t2+8t+15=(t+4)2-1=(t+5)(t+3)=(x2+8x+12)(X2+8x+10)=(x+2)(x+6)(x2+8x+10)
vậy...........................................
Phân tích đa thức thành nhân tử
a)x^5+x+1
b)(x+1)(x+3)(x+5)(x+7)+15
Help meeeeee!🙏
a)x^5+x+1
=x5-x2+x2+x+1
=x2(x3-1)+x2+x+1
=x2(x+1)(x2+x+1)+x2+x+1
=(x2+x+1)(x3+x2+1)
b)(x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
Đặt x2+8x+7=t
=> t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+10)(x2+8x+12)
phân tích đa thức thành nhân tử (x-1)(x-2)(x-3)(x-5)-15
Phân tích đa thức thành nhân tử:
(x-1)(x-2)(x-3)(x-5)-15
Phân tích đa thức thành nhân tử:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
(x+1)(x+3)(x+5)(x+8)+15
=[(x+1)(x+7)][(x+3)(x+5)]+15
=(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
=>x2+8x+15=t+8
=>(x2 +8x+7)(x2+8x+15)+15
=t(t+8)+15
=t2+8t+15
=t2+3t+5t+15
=t(t+3)+5(t+3)
=(t+3)(t+5)
=(x2+8x+10)(x2+8x+12)
Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow A=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=t\)
\(\Rightarrow A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t+1\right)\left(t-1\right)\)
\(=\left(x^2+8x+11+1\right)\left(x^2+8x+11-1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(=\left(x^2+2x+6x+12\right)\left(x^2+8x+10\right)\)\(=\left[x\left(x+2\right)+6\left(x+2\right)\right]\left(x^2+8x+10\right)\)
\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)