Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
10 tháng 9 2023 lúc 0:01

Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

Quyên Bùi Hà
Xem chi tiết

a)Giả sử tồn tại số nguyên n sao cho \(n^2+2002\)là số chình phương.

\(\Rightarrow n^2+2002=a^2\left(a\inℕ^∗\right)\)

\(\Rightarrow a^2-n^2=2002\)

\(\Rightarrow a^2+an-an-n^2=2002\)

\(\Rightarrow a\left(a+n\right)-n\left(a+n\right)=2002\)

\(\Rightarrow\left(a-n\right)\left(a+n\right)=2002\)

Mà \(2002⋮2\)\(\Rightarrow\orbr{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}\left(1\right)}\)

Ta có : \(\left(a+n\right)-\left(a-n\right)=-2n\)

\(\Rightarrow\)\(a-n\)và \(a+n\)có cùng tính chẵn lẻ \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\hept{\begin{cases}a-n⋮2\\a+n⋮2\end{cases}}\)

Vì 2 là số nguyên tố \(\Rightarrow\left(a-n\right)\left(a+n\right)⋮4\)

mà 2002 không chia hết cho 4

\(\Rightarrow\)Mâu thuẫn

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrow\)Không tồn tại số nguyên n thỏa mãn đề bài

Khách vãng lai đã xóa
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 23:49

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.

 

Vinne
Xem chi tiết
Đỗ Tuệ Lâm
30 tháng 1 2022 lúc 17:29

undefined

Nguyễn Việt Lâm
30 tháng 1 2022 lúc 17:29

\(n^2+3n=k^2\)

\(\Leftrightarrow4n^2+12n=4k^2\)

\(\Leftrightarrow\left(2n+3\right)^2-9=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n+3\right)^2-\left(2k\right)^2=9\)

\(\Leftrightarrow\left(2n-2k+3\right)\left(2n+2k+3\right)=9\)

Phương trình ước số cơ bản

Vân Lê
Xem chi tiết
Bên nhau trọn đời
Xem chi tiết
Nguyễn Minh Quang
10 tháng 10 2021 lúc 7:48

ta có :

undefined

Khách vãng lai đã xóa
Fucking bitch
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
19 tháng 5 2021 lúc 10:38

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

Nguyễn Thị Minh Nguyệt
Xem chi tiết
Nguyễn Thị Minh Nguyệt
Xem chi tiết
Thiên An
3 tháng 7 2017 lúc 21:32

Đặt  \(A=n\left(n+1\right)\left(n+7\right)\left(n+8\right)\)

\(=\left(n^2+8n\right)\left(n^2+8n+7\right)\)   (1)

Đặt  \(t=n^2+8n\)   Vì n > 0 nên t > 0

Vì A là số chính phương đặt A=k2  \(\left(k\in N\right)\)   Vì t>0 => k > 0

(1)   \(\Rightarrow\)  \(t\left(t+7\right)=k^2\)        

\(\Leftrightarrow4t^2+28t-4k^2=0\)

\(\Leftrightarrow\left(4t^2+28t+49\right)-4k^2-49=0\)

\(\Leftrightarrow\left(2t+7\right)^2-\left(2k\right)^2=49\)

\(\Leftrightarrow\left(2t+7-2k\right)\left(2t+7+2k\right)=49\)

Xét các ước của 49 với chú ý rằng  \(2t+7-2k< 2t+7+2k\)  vì k > 0 từ đó dễ dàng tìm được t

Sau đó ta tìm được các giá trị của n.